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STATISTICAL INFERENCE
PART I

POINT ESTIMATION
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STATISTICAL INFERENCE

• Determining certain unknown properties of 

a probability distribution on the basis of a 

sample (usually, a r.s.) obtained from that 

distribution

Point Estimation:

Interval Estimation:

Hypothesis Testing:
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STATISTICAL INFERENCE

• Parameter Space (): The set of all 

possible values of an unknown parameter, 

; .

• A pdf with unknown parameter: f(x; ), .

• Estimation: Where in ,  is likely to be?

{ f(x; ),  } The family of pdfs
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STATISTICAL INFERENCE

• Statistic: A function of rvs (usually a 

sample rvs in an estimation) which does not 

contain any unknown parameters.
2, ,X S etc

• Estimator of an unknown parameter : 

A statistic used for estimating .
̂

 1 2
ˆ : , , ,

n
estimator U X X X 

:

: : A particular value of an estimator

X Estimator

x Estimate


An observed value
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METHODS OF ESTIMATION

Method of Moments Estimation, 

Maximum Likelihood Estimation
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METHOD OF MOMENTS 

ESTIMATION (MME)

• Let X1, X2,…,Xn be a r.s. from a population 

with pmf or pdf f(x;1, 2,…, k). The MMEs 

are found by equating the first k population 

moments to corresponding sample moments 

and solving the resulting system of 

equations.

Sample MomentsPopulation Moments
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METHOD OF MOMENTS 

ESTIMATION (MME)
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so on…

Continue this until there are enough equations 

to solve for the unknown parameters.
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EXAMPLES

• X~Exp(). For a r.s of size n, find the MME 

of .
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EXAMPLES

• X~Gamma(, ). For a r.s of size n, find the 

MMEs of  and .
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DRAWBACKS OF MMES

• Although sometimes parameters are 

positive valued, MMEs can be negative.

• If moments does not exist, we cannot find 

MMEs.
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MAXIMUM LIKELIHOOD 

ESTIMATION (MLE)

• Let X1, X2,…,Xn be a r.s. from a population 

with pmf or pdf f(x;1, 2,…, k), the 

likelihood function is defined by
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MAXIMUM LIKELIHOOD 

ESTIMATION (MLE)

• For each sample point (x1,…,xn), let     

be a parameter value at which 

L(1,…, k| x1,…,xn) attains its maximum as a 

function of (1,…, k), with (x1,…,xn) held fixed. A 

maximum likelihood estimator (MLE) of 

parameters (1,…, k) based on a sample (X1,…,Xn) 

is 
   1 1 1

ˆ ˆ,..., , , ,...,
n k n

x x x x 

   1 1 1
ˆ ˆ,..., , , ,...,

n k n
x x x x 

• The MLE is the parameter point for which the 

observed sample is most likely.
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EXAMPLES
• Let X~Bin(n,p). One observation on X is available, 

and it is known that n is either 2 or 3 and p=1/2

or 1/3. Our objective is to estimate the pair (n,p).

x (2,1/2) (2,1/3) (3,1/2) (3,1/3) Max. Prob.

0 1/4 4/9 1/8 8/27 4/9

1 1/2 4/9 3/8 12/27 1/2

2 1/4 1/9 3/8 6/27 3/8

3 0 0 1/8 1/27 1/8

  

(2,1/ 3) if 0

(2,1/ 2) if 1
,ˆ ˆ

(3,1/ 2) if 2

(3,1/ 2) if 3

x

x
n p x

x

x
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MAXIMUM LIKELIHOOD 

ESTIMATION (MLE)

• It is convenient to work with the logarithm of the 

likelihood function.

• Suppose that f(x;1, 2,…, k) is a positive, 

differentiable function of 1, 2,…, k. If a 

supremum                   exists, it must satisfy the 

likelihood equations 
1 2
ˆ ˆ ˆ, , ,

k
  

 1 2 1 2
ln , , , ; , , ,

0,  1,2,...,k k

j

L x x x
j k

  




 



• MLE occurring at boundary of  cannot be 

obtained by differentiation. So, use inspection.
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EXAMPLES

1. X~Exp(), >0. For a r.s of size n, find the 

MLE of .
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EXAMPLES

2. X~N(,2). For a r.s. of size n, find the 

MLEs of  and 2.
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EXAMPLES

3. X~Uniform(0,), >0. For a r.s of size n, 

find the MLE of .
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EXAMPLES

4. X~Uniform(, +1), >0. For a r.s of size n, 

find the MLE of .
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INVARIANCE PROPERTY OF THE 

MLE

• If     is the MLE of , then  for any function 

(), the MLE of () is       . 

̂

 ˆ 

Example: X~N(,2). For a r.s. of size n, the 

MLE of  is    .  By the invariance property 

of MLE, the MLE of 2 is 
X

2.X
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ADVANTAGES OF MLE

• Often yields good estimates, especially for 

large sample size.

• Usually they are consistent estimators.

• Invariance property of MLEs

• Asymptotic distribution of MLE is Normal.

• Most widely used estimation technique.
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DISADVANTAGES OF MLE

• Requires that the pdf or pmf is known except the 
value of parameters.

• MLE may not exist or may not be unique.

• MLE may not be obtained explicitly (numerical or 
search methods may be required.). It is sensitive 
to the choice of starting values when using 
numerical estimation.

• MLEs can be heavily biased for small samples. 

• The optimality properties may not apply for small 
samples. 



22

SOME PROPERTIES OF 

ESTIMATORS

• UNBIASED ESTIMATOR (UE): An 

estimator    is an UE of the unknown 

parameter , if

̂

ˆE  for all       

Otherwise, it is a Biased Estimator of .

 ˆ ˆBias E


      Bias of      for estimating ̂

If    is UE of , ̂  ˆ 0.Bias
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SOME PROPERTIES OF 

ESTIMATORS

• ASYMPTOTICALLY UNBIASED 

ESTIMATOR (AUE): An estimator     is 

an AUE of the unknown parameter , if

̂

   ˆ ˆ0 lim 0
n

Bias  but Bias
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SOME PROPERTIES OF 

ESTIMATORS

• CONSISTENT ESTIMATOR (CE): An 

estimator    which converges in probability 

to an unknown parameter  for all  is 

called a CE of .

̂

ˆ .p 

• MLEs are generally CEs.
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EXAMPLES

1. For a r.s. of size n,

 E X X  is an UE of .  

By WLLN, 
pX 

X  is a CE of .
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EXAMPLES

2. X~Uniform(0,), >0. For a r.s of size n, is 

the MLE of  an UE and a CE of ?
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EXAMPLES

3. Let X1, X2,…,Xn be a r.s. from NB(2,)

distribution

     2; 1 1 , 0,1,...,0 1
x

f x x x        

where
   2

2

2 1 2 1
. and 

 
 

 

 
 

a) Find the MLE of .

b) Find the MLE of .

c) Find an UE of 1/ .
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MEAN SQUARED ERROR (MSE)

• The Mean Square Error (MSE) of an 

estimator    for estimating  iŝ

      
22

ˆ ˆ ˆ ˆMSE E Var Bias
 

         

If              is smaller,    is the better 

estimator of .
 ˆMSE


 ̂

1 2
ˆ ˆ ,For two estimators,  and  of  if  

   1 2
ˆ ˆ ,MSE MSE

 
   

1
ˆ  is better estimator of . 
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EXAMPLE

Let X1, X2,…,Xn be a r.s. from Uniform(0,)

distribution

a) Find the MLE of .

b) Find the MME of .

c) Compare MSEs of MLE and MME of 

and comment on which one is better 

estimator of .
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MEAN SQUARED ERROR 

CONSISTENCY

• Tn is called mean squared error 

consistent (or consistent in quadratic 

mean) if E{Tn}20 as n.

Theorem: Tn is consistent in MSE iff

i) Var(Tn)0 as n. 

 ) lim .
n

n
ii  E T 




• If E{Tn}20 as n, Tn is also a CE of .
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SUFFICIENT STATISTICS

• X, f(x;), 

• X1, X2,…,Xn be a sample rvs

• Y=U(X1, X2,…,Xn ) is a statistic.

• A sufficient statistic, Y is a statistic which 

contains all the information for the estimation 

of .
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SUFFICIENT STATISTICS

• Given the value of Y, the sample contains 

no further information for the estimation of 

.

• Y is a sufficient statistic (ss) for  if the 

conditional distribution of sample rvs given 

the value of y of Y, i.e. h(x1,x2,…,xn|y) does not 

depend on  for every given Y=y.

• A ss for  is not unique.
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SUFFICIENT STATISTICS

• The conditional distribution of sample rvs 

given the value of y of Y, is defined as
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• If Y is a ss for , then

 
 

 
 1 2

1 2 1 2

; , , ,
, , , , , ,

;

n

n n

L x x x
h x x x y H x x x

g y




 

ss for  may include y or constant.

Not depend on  for every given y.

• Also, the conditional range of Xi given y not depend on .
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SUFFICIENT STATISTICS

EXAMPLE: X~Ber(p). For a r.s. of size n, 

find a ss for p is exists.
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SUFFICIENT STATISTICS

• If Y is a ss for , then a 1-1 transformation 

of Y, say Y1=fn(Y) is also a ss for .

• Neyman’s Factorization Theorem: Y is a 

ss for  iff

     1 2 1 2
; , , ,

n
L k y k x x x 

where k1 and k2 are non-negative 

functions and k2 does not depend on  for 

every given y.

The likelihood function Does not contain any other xi
Not depend on  for 

every given y (also in the 

conditional range of xi.)
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EXAMPLES

1. X~Ber(p). For a r.s. of size n, find a ss for 

p is exists.
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EXAMPLES

2. X~N(,2) where  is known. For a r.s. of 

size n, find a ss for 2.



38

EXAMPLES

3. Let X1, X2,…,Xn be a r.s. from Uniform(0,) 

distribution. Find a ss for , if exists.
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EXAMPLES

4. Let X1, X2,…,Xn be a r.s. from Cauchy() 

distribution. Find a ss for , if exists.
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1
; , ,

1
f x x

x
 

 
        

 



40

SUFFICIENT STATISTICS

• A ss may not exist. Jointly ss Y1,Y2,…,Yk

may needed.

• A ss for  is not unique, if exists.

• If the MLE of  exists and unique and if a 

ss for  exists, then MLE is a function of a 

ss for .
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EXAMPLES

5. X~N(,2). For a r.s. of size n, find jss for 

and 2.
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EXAMPLES

6. X~Uniform(1 ,2 ). For a r.s. of size n, find 

jss for 1 and 2 .
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MINIMAL SUFFICIENT STATISTICS

• A ss T(X) is called minimal ss if, for any 
other ss T’(X), T(x) is a function of T’(x).

• THEOREM: Let f(x;) be the pmf or pdf of 
a sample X1, X2,…,Xn. Suppose there exist 
a function T(x) such that, for two sample 
points x1,x2,…,xn and y1,y2,…,yn, the ratio

is constant as a function of  iff T(x)=T(y).
Then, T(X) is a minimal sufficient statistic 
for .

 

 
1 2

1 2

, , , ;

, , , ;

n

n

f x x x

f y y y
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EXAMPLE

• X~N(,2). For a r.s. of size n, find minimal 

jss for  and 2.
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RAO-BLACKWELL THEOREM

• Let X1, X2,…,Xn have joint pdf or pmf 
f(x1,x2,…,xn;) and let S=(S1,S2,…,Sk) be a 
vector of jss for . If T is an UE of ()
and (T)=E(TS), then

i) (T) is an UE of () .

ii) (T) is a fn of S.

iii) Var((T) ) Var(T) for all .

• (T) is a uniformly better unbiased estimator 
of () .
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SUFFICIENT STATISTICS

• If an UE of  exists, than an UE of  which 

is a function of a ss for  also exists.

• The minimum variance unbiased estimator 

(MVUE) of , if exists, should be a function 

of a ss for .
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ANCILLARY STATISTIC

• A statistic S(X) whose distribution does not 

depend on the parameter  is called an 

ancillary statistic.

• An ancillary statistic contains no information 

about .

• An ancillary statistic and ss for  are 

dependent.
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EXAMPLE

• X~N(,1). X1, X2,…,Xn be a r.s. 

S2~

The distribution is free from .

S2 is ancillary for .

Gamma[(n-1)/2,2/n]
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COMPLETENESS AND 

UNIQUENESS

• Let {f(x; ), } be a family of pdfs (or 

pmfs) and U(x) be an arbitrary function of x

not depending on . If

requires that the function itself equal to 0 

for all possible values of x; then we say 

that this family is a complete family of pdfs 

(or pmfs).

   0 for all E U X  

    0 for all 0 for all .E U X U x x   



50

EXAMPLES

1. Show that the family {Bin(n=2,); 0<<1}

is complete.
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EXAMPLES

• X~Uniform(,). Show that the family 

{f(x;), >0} is not complete.



52

EXAMPLES

• Consider the family {f(x;), } where

 
1

; ,0f x x 


  

a) Show that the family is complete in 

={:0<<1}.

b) Show that the family is not complete in 

={:1<<}.
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BASU THEOREM

• If T(X) is a complete and minimal sufficient 

statistic, then T(X) is independent of every 

ancillary statistic.

• X~N(,2).

: the mss for X 

S2~
2

1n  Ancillary statistic for 

By Basu theorem,     and S2 are independent.X
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COMPLETE AND SUFFICIENT 

STATISTICS (css)

• Y is a complete and sufficient statistic 

(css) for  if Y is a ss for  and the family

  ; ;g y   

is complete.
The pdf of Y.

1) Y is a ss for .

2) u(Y) is an arbitrary function of Y.

E(u(Y))=0 for all  implies that u(y)=0

for all possible Y=y.



55

LEHMANN-SCHEFFE THEOREM

• Let Y be a css for . If there is a function Y

which is an UE of , then the function is 

the unique Minimum Variance Unbiased 

Estimator (MVUE) of .

• Y css for .

• T(y)=fn(y) and E[T(Y)]=.

T(Y) is the MVUE of . 

So, it is the best estimator of .
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THE MINIMUM VARIANCE 

UNBIASED ESTIMATOR

• Let Y be a css for . Since Y is complete, there 

could be only a unique function of Y which is an 

UE of . 

• Let U1(Y) and U2(Y) be two function of Y. 

W(Y)=U1(Y)U2(Y)=0 for all possible values of Y. 

Therefore, U1(Y)=U2(Y) for all Y.

• Rao-Blackwell Theorem: If T is am unbiased 

estimator of , and S is a css for , then 

E[(T)]=E[E(TS)]= and (T) is the unique MVUE 

of .
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EXAMPLES

1. X~Ber(). Let X1, X2,…,Xn be a r.s.

Show that               is a css for  and find 

the MVUE of .
1

n

i
i

Y X
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EXAMPLES

2. Let X have the pdf f(x;) with =2 and 

2=22. Let Y=X1+X2+…+Xn be a css for 

 for a r.s. of size n.

a) Find the MVUE of .

b) Find the MVUE of 2.

c) Find E[X1+X2|Y].
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EXAMPLES

3. Let X have the pdf 
  2 4; 3 , , 0f x x x     

where =3/2 and 2= 32/4.

•Consider a r.s. X1, X2,…,Xn. 

•Let X(1)=min(X1, X2,…,Xn) with pdf

 
   

1

3 133 ,
nn

Xg y n y y 
 

 

and E(X(1))=3n/(3n1).

Find the MVUE of 2= 32/4.
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EXPONENTIAL CLASS OF PDFS

• X is a continuous (discrete) rv with pdf 

f(x;), . If the pdf can be written in the 

following form

         
; ,

P K x S x Q
f x e a x b

 


 
  

the pdf is a member of exponential class 

of pdfs of the continuous (discrete) type.
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REGULAR CASE OF THE 

EXPONENTIAL CLASS OF PDFS

• We have a regular case of the exponential 

class of pdfs of the continuous type if

a) Range of X does not depend on .

b) P() is a non-trivial continuous function of  for 

.

c) dK(x)/dx0 and a continuous function of x for 

a<x<b.

d) S(x) is a continuous function of x for a<x<b.
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REGULAR CASE OF THE 

EXPONENTIAL CLASS OF PDFS

• Exponential Class+Regular Case+Random Sample

 
1

n

i
i

Y K X


  is a css for .

If Y is an UE of , Y is the MVUE of .
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EXAMPLES

1. X~N(,2) where  is known. Find a css 

for 2 and find the MVUE of 2.
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EXAMPLES

2. X~N(,2) where 2 is known. Find a css 

for  and find the MVUE of .
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REGULAR CASE OF THE 

DISCERETE EXPONENTIAL 

CLASS OF PDFS

• We have a regular case of the 

exponential class of pdfs of the 

continuous type if

a) Range of X does not depend on .

b) P() is a non-trivial continuous function of 

 for .

c) K(x)c for x=a1,a2,….
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EXAMPLES

3. X~Ber(). 

a) Find a css for . 

b) Find the MVUE of .

c) Find the MVUE of 2.
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EXAMPLES

4. X~Poisson(). Find a css for  and find the 

MVUE of P(X1)=(1+ )e.
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EXAMPLES

5. X~Uniform(). Is this pdf a member of 

exponential class of pdfs? Why?
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FISHER INFORMATION AND 

INFORMATION CRITERIA

• X, f(x;), , xA (not depend on ).
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FISHER INFORMATION AND 

INFORMATION CRITERIA
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FISHER INFORMATION AND 

INFORMATION CRITERIA
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FISHER INFORMATION AND 

INFORMATION CRITERIA

         ;;;
2

xVxExE 

The Fisher Information in a random variable X:

           0;;;
2

  xExVxEI

The Fisher Information in the random sample:

    nIIn 

72
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CRAMER-RAO LOWER BOUND 

(CRLB)

• Let X1,X2,…,Xn be sample random 

variables.

• Y=U(X1,X2,…,Xn): a statistic not containing 

.

• E(Y)=m().

• Z=’(x1,x2,…,xn;) is a r.v.

• E(Z)=0 and V(Z)=In().

73
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CRAMER-RAO LOWER BOUND 

(CRLB)

• Cov(Y,Z)=E(YZ)-E(Y)E(Z)=E(YZ)

74
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CRAMER-RAO LOWER BOUND 

(CRLB)

• E(Y.Z)=m’()

• -1Corr(Y,Z)1

• 0 Corr(Y,Z)21 
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BoundLower  Rao-Cramer The
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The Cramer-Rao Inequality

(Information Inequality)



76

CRAMER-RAO LOWER BOUND 

(CRLB)

• CRLB is the lower bound for the variance 

of the unbiased estimator of m().

• When V(Y)=CRLB, Y is the MVUE of m().

• For a r.s.,

76

 
  
 

BoundLower  Rao-Cramer The
2









nI

m
YV



77

EFFICIENT ESTIMATOR

• Y is an efficient estimator (EE) of its 

expectation, m(), if its variance reaches 

the CRLB.

• An EE of m() may not exist.

• The EE of m(), if exists, is unique.

• The EE of m() is the unique MVUE of m().

• If the MVUE of m() is not EE of m(), then an 

EE of m() does not exist.

77
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ASYMPTOTIC EFFICIENT 

ESTIMATOR

• Y is an asymptotic EE of m() if

78
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EXAMPLES

1. X~Poi(µ). 

a) Find CRLB for µ.

b) Find CRLB for e-µ.

c) Find MLE of µ.

d) Show that               is an UE of e-µ.
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EXAMPLES

2. X~Uniform(0,)

80
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EXAMPLES

3. X~Exp(1/). Find an EE of , if exists.

81
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STRUCTURAL FORM

• If

where k() is free from x1,x2,…,xn, then 

automatically    is an UE of  and    is the 

MVUE of .

Remark:
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EXAMPLE

X~Exp(). Find an EE of , if exists.

83
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LIMITING DISTRIBUTION OF 

MLEs
• : MLE of  (obtained by differentiation)

• X1,X2,…,Xn is a random sample.

̂
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LIMITING DISTRIBUTION OF 

MLEs
• Let                   be MLEs of 1, 2,…, m.1 2

ˆ ˆ ˆ, , , m  

 
.

ˆ ~ ,
i

asympt

i iN RCLB


 

   
 

.
ˆ ~ , , 1,2,...,
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asympt
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m
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• EE of m()=    ˆ  for m fn ss 

•If Y is an EE of , then Z=a+bY is an EE 

of a+bm() where a and b are constants.
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EXAMPLE

• X~N(,2) where 2 is known. Assume 

that we have a r.s of size n.

a) Find a Fisher Information.

b) Find the EE of , if it exists.

c) Find the EE of 2, if it exists.



87

EXAMPLE

• X~Exp(2). Assume that we have a r.s of 

size n.

a) Find a Fisher Information.

b) Using CRLB, show that      is the EE of 2.

c) Find the EE of 4, if it exists.  If it does not 

exist, find an asymptotic EE of 4 and 

specify its asymptotic distribution.

d) Find the MVUE of 4, if it exists. 

X


