STATISTICAL INFERENCE PART I POINT ESTIMATION

STATISTICAL INFERENCE

 Determining certain unknown properties of a probability distribution on the basis of a sample (usually, a r.s.) obtained from that distribution

Point Estimation: $\hat{\mu} = 5$ $\mu \leq 8$ $\mu \leq 8$ $\mu \leq 8$ $\mu = 5$ Hypothesis Testing: $H_0: \mu = 5$

 $H_1: \mu \neq 5$

STATISTICAL INFERENCE

- **Parameter Space** (Ω): The set of all possible values of an unknown parameter, θ ; $\theta \in \Omega$.
 - A pdf with unknown parameter: $f(x; \theta), \theta \in \Omega$.
 - Estimation: Where in Ω , θ is likely to be?

{ $f(x; \theta), \theta \in \Omega$ } _ _ _ The family of pdfs

STATISTICAL INFERENCE

 Statistic: A function of rvs (usually a sample rvs in an estimation) which does not contain any unknown parameters.

$$\overline{X}, S^2, etc$$

• Estimator of an unknown parameter θ : $\hat{\theta}$ A statistic used for estimating θ . $\hat{\theta}$: estimator = $U(X_1, X_2, \dots, X_n)$

 \overline{X} : Estimator

An observed value

4

 \overline{x} : *Estimate* : A particular value of an estimator

METHODS OF ESTIMATION

Method of Moments Estimation, Maximum Likelihood Estimation

METHOD OF MOMENTS ESTIMATION (MME)

 Let X₁, X₂, ..., X_n be a r.s. from a population with pmf or pdf f(x; θ₁, θ₂, ..., θ_k). The MMEs are found by equating the first k population moments to corresponding sample moments and solving the resulting system of equations.

Population Moments

$$\mu_{k} = E \left[X^{k} \right]$$

Sample Moments

$$M_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$$

METHOD OF MOMENTS ESTIMATION (MME)

$$\mu_{1} = M_{1} \qquad \mu_{2} = M_{2} \qquad \mu_{3} = M_{3}$$

so on...
$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad E(X^{2}) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \qquad E(X^{3}) = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{3}$$

Continue this until there are enough equations to solve for the unknown parameters.

X~*Exp*(*θ*). For a r.s of size n, find the MME of *θ*.

• $X \sim Gamma(\alpha, \beta)$. For a r.s of size n, find the MMEs of α and β .

DRAWBACKS OF MMES

• Although sometimes parameters are positive valued, MMEs can be negative.

 If moments does not exist, we cannot find MMEs.

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

• Let $X_1, X_2, ..., X_n$ be a r.s. from a population with pmf or pdf $f(x; \theta_1, \theta_2, ..., \theta_k)$, the likelihood function is defined by

$$L(\theta_1, \theta_2, \dots, \theta_k | x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_k)$$
$$= \prod_{i=1}^n f(x_i | \theta_1, \theta_2, \dots, \theta_k)$$
$$= \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_k)$$

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

• For each sample point $(x_1, ..., x_n)$, let

$$\hat{\theta}_1(x_1,\ldots,x_n),\cdots,\hat{\theta}_k(x_1,\ldots,x_n)$$

be a parameter value at which

 $L(\theta_1, ..., \theta_k | x_1, ..., x_n)$ attains its maximum as a function of $(\theta_1, ..., \theta_k)$, with $(x_1, ..., x_n)$ held fixed. A maximum likelihood estimator (MLE) of parameters $(\theta_1, ..., \theta_k)$ based on a sample $(X_1, ..., X_n)$ is $\hat{\theta}_1(x_1, ..., x_n), ..., \hat{\theta}_k(x_1, ..., x_n)$

• The MLE is the parameter point for which the observed sample is most likely.

12

 Let X~Bin(n,p). One observation on X is available, and it is known that n is either 2 or 3 and p=1/2 or 1/3. Our objective is to estimate the pair (n,p).

X	(2,1/2)	(2,1/3)	(3,1/2)	(3,1/3)	Max. Prob.
0	1/4	4/9	1/8	8/27	4/9
1	1/2	4/9	3/8	12/27	1/2
2	1/4	1/9	3/8	6/27	3/8
3	0	0	1/8	1/27	1/8

$$(\hat{n}, \hat{p})(x) = \begin{cases} (2, 1/3) \text{ if } x = 0\\ (2, 1/2) \text{ if } x = 1\\ (3, 1/2) \text{ if } x = 2\\ (3, 1/2) \text{ if } x = 3 \end{cases}$$

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

- It is convenient to work with the logarithm of the likelihood function.
- Suppose that f(x; θ₁, θ₂, ..., θ_k) is a positive, differentiable function of θ₁, θ₂, ..., θ_k. If a supremum θ̂₁, θ̂₂, ..., θ̂_k exists, it must satisfy the likelihood equations

$$\frac{\partial \ln L(\theta_1, \theta_2, \cdots, \theta_k; x_1, x_2, \cdots, x_k)}{\partial \theta_j} = 0, \ j = 1, 2, \dots, k$$

• MLE occurring at boundary of Ω cannot be obtained by differentiation. So, use inspection.

1. $X \sim Exp(\theta)$, $\theta > 0$. For a r.s of size *n*, find the MLE of θ .

2. $X \sim N(\mu, \sigma^2)$. For a r.s. of size *n*, find the MLEs of μ and σ^2 .

3. $X \sim Uniform(0, \theta), \theta > 0$. For a r.s of size *n*, find the MLE of θ .

4. $X \sim Uniform(\theta, \theta+1), \theta > 0$. For a r.s of size *n*, find the MLE of θ .

INVARIANCE PROPERTY OF THE MLE

• If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Example: $X \sim N(\mu, \sigma^2)$. For a r.s. of size *n*, the MLE of μ is \overline{X} . By the invariance property of MLE, the MLE of μ^2 is \overline{X}^2 .

ADVANTAGES OF MLE

- Often yields good estimates, especially for large sample size.
- Usually they are consistent estimators.
- Invariance property of MLEs
- Asymptotic distribution of MLE is Normal.
- Most widely used estimation technique.

DISADVANTAGES OF MLE

- Requires that the pdf or pmf is known except the value of parameters.
- MLE may not exist or may not be unique.
- MLE may not be obtained explicitly (numerical or search methods may be required.). It is sensitive to the choice of starting values when using numerical estimation.
- MLEs can be heavily biased for small samples.
- The optimality properties may not apply for small samples.

SOME PROPERTIES OF ESTIMATORS

• UNBIASED ESTIMATOR (UE): An estimator $\hat{\theta}$ is an UE of the unknown parameter θ , if

$$E\left[\hat{\theta}\right] = \theta \text{ for all } \theta \in \Omega$$

Otherwise, it is a **Biased Estimator** of θ . $Bias_{\theta}(\hat{\theta}) = E[\hat{\theta}] - \theta \longrightarrow Bias \text{ of } \hat{\theta} \text{ for estimating } \theta$

If $\hat{\theta}$ is UE of θ , $Bias_{\theta}(\hat{\theta}) = 0$.

SOME PROPERTIES OF ESTIMATORS

• ASYMPTOTICALLY UNBIASED ESTIMATOR (AUE): An estimator $\hat{\theta}$ is an AUE of the unknown parameter θ , if

$$Bias_{\theta}(\hat{\theta}) \neq 0 \ but \ \lim_{n \to \infty} Bias_{\theta}(\hat{\theta}) = 0$$

SOME PROPERTIES OF ESTIMATORS

• **CONSISTENT ESTIMATOR (CE):** An estimator $\hat{\theta}$ which converges in probability to an unknown parameter θ for all $\theta \in \Omega$ is called a CE of θ .

$$\hat{\theta} \xrightarrow{p} \theta.$$

• MLEs are generally CEs.

1. For a r.s. of size *n*,

$$E(\overline{X}) = \mu \Longrightarrow \overline{X} \text{ is an UE of } \mu.$$

By WLLN,
$$\overline{X} \xrightarrow{p} \to \mu$$
$$\Rightarrow \overline{X} \text{ is a CE of } \mu.$$

2. $X \sim Uniform(0, \theta)$, $\theta > 0$. For a r.s of size *n*, is the MLE of θ an UE and a CE of θ ?

3. Let $X_1, X_2, ..., X_n$ be a r.s. from $NB(2, \theta)$ distribution

$$f(x;\theta) = (x+1)\theta^2 (1-\theta)^x, x = 0, 1, ..., 0 < \theta < 1$$

where
$$\mu = \frac{2(1-\theta)}{\theta}$$
 and $\sigma^2 = \frac{2(1-\theta)}{\theta^2}$.

a) Find the MLE of θ.
b) Find the MLE of μ.
c) Find an UE of 1/ θ.

MEAN SQUARED ERROR (MSE)

• The Mean Square Error (MSE) of an estimator $\hat{\theta}$ for estimating θ is

$$M_{\theta}^{SE}(\hat{\theta}) = E\left[\theta - \hat{\theta}\right]^{2} = Var(\hat{\theta}) + \left(B_{\theta}^{ias}(\hat{\theta})\right)^{2}$$

If $MSE(\hat{\theta})$ is smaller, $\hat{\theta}$ is the better estimator of θ .

For two estimators, $\hat{\theta}_1$ and $\hat{\theta}_2$ of θ , if $MSE_{\theta}(\hat{\theta}_1) < MSE_{\theta}(\hat{\theta}_2), \theta \in \Omega$

 $\hat{\theta}_1$ is better estimator of θ .

- Let $X_1, X_2, ..., X_n$ be a r.s. from $Uniform(0, \theta)$ distribution
 - a) Find the MLE of θ .
 - b) Find the MME of θ .

c) Compare MSEs of MLE and MME of θ and comment on which one is better estimator of θ .

MEAN SQUARED ERROR CONSISTENCY

- T_n is called mean squared error consistent (or consistent in quadratic mean) if $E\{T_n - \theta\}^2 \rightarrow 0$ as $n \rightarrow \infty$.
- **Theorem:** T_n is consistent in MSE iff *i*) $Var(T_n) \rightarrow 0$ as $n \rightarrow \infty$.

ii)
$$\lim_{n\to\infty} E[T_n] = \theta.$$

• If $E\{T_n - \theta\}^2 \rightarrow 0$ as $n \rightarrow \infty$, T_n is also a CE of θ .

- $X, f(x; \theta), \theta \in \Omega$
- X_1, X_2, \dots, X_n be a sample rvs
- $Y=U(X_1, X_2, ..., X_n)$ is a statistic.
- A sufficient statistic, Y is a statistic which contains all the information for the estimation of θ .

- Given the value of Y, the sample contains no further information for the estimation of θ.
 - *Y* is a **sufficient statistic (ss)** for θ if the conditional distribution of sample rvs given the value of *y* of *Y*, *i.e.* $h(x_1, x_2, ..., x_n/y)$ does not depend on θ for every given Y=y.
 - A ss for θ is not unique.

• The conditional distribution of sample rvs given the value of *y* of *Y*, is defined as

$$h(x_1, x_2, \dots, x_n | y) = \frac{f(x_1, x_2, \dots, x_n, y; \theta)}{g(y; \theta)}$$
$$h(x_1, x_2, \dots, x_n | y) = \frac{L(\theta; x_1, x_2, \dots, x_n)}{g(y; \theta)}$$

• If Y is a ss for θ , then

Not depend on θ for every given y.

$$h(x_{1}, x_{2}, \dots, x_{n} | y) = \frac{L(\theta; x_{1}, x_{2}, \dots, x_{n})}{g(y; \theta)} = H(x_{1}, x_{2}, \dots, x_{n})$$

$$\boxed{\text{ss for } \theta} \qquad \boxed{\text{may include } y \text{ or constant.}}$$

$$33$$

• Also, the conditional range of X_i given y not depend on θ .

EXAMPLE: *X*~*Ber*(*p*). For a r.s. of size *n*, find a ss for *p* is exists.

- If *Y* is a ss for θ , then a 1-1 transformation of *Y*, say $Y_1 = fn(Y)$ is also a ss for θ .
- Neyman's Factorization Theorem: Y is a ss for θ iff

$$L(\theta) = k_1(y;\theta)k_2(x_1,x_2,\cdots,x_n)$$

The likelihood function Does not contain any other x_i

Not depend on θ for every given y (also in the conditional range of x_i .)

where k_1 and k_2 are non-negative functions and k_2 does not depend on θ for every given y.

1. *X~Ber(p)*. For a r.s. of size *n*, find a ss for *p* is exists.

2. $X \sim N(\mu, \sigma^2)$ where μ is known. For a r.s. of size *n*, find a ss for σ^2 .

3. Let $X_1, X_2, ..., X_n$ be a r.s. from Uniform(0, θ) distribution. Find a ss for θ , if exists.

4. Let $X_1, X_2, ..., X_n$ be a r.s. from Cauchy(θ) distribution. Find a ss for θ , if exists.

$$f(x;\theta) = \frac{1}{\pi \left(1 + \left(x - \theta\right)^2\right)}, -\infty < x < \infty, -\infty < \theta < \infty$$

SUFFICIENT STATISTICS

- A ss may not exist. Jointly ss $Y_1, Y_2, ..., Y_k$ may needed.
- A ss for θ is not unique, if exists.
- If the MLE of θ exists and unique and if a ss for θ exists, then MLE is a function of a ss for θ.

5. *X*~*N*(μ , σ^2). For a r.s. of size *n*, find jss for μ and σ^2 .

6. *X*~*Uniform*(θ_1, θ_2). For a r.s. of size *n*, find jss for θ_1 and θ_2 .

MINIMAL SUFFICIENT STATISTICS

- A ss *T*(*X*) is called minimal ss if, for any other ss *T*'(*X*), *T*(*x*) is a function of *T*'(*x*).
- **THEOREM:** Let $f(x; \theta)$ be the pmf or pdf of a sample $X_1, X_2, ..., X_n$. Suppose there exist a function T(x) such that, for two sample points $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$, the ratio

$$\frac{f(x_1, x_2, \cdots, x_n; \theta)}{f(y_1, y_2, \cdots, y_n; \theta)}$$

is constant as a function of
$$\theta$$
 iff $T(x)=T(y)$.
Then, $T(X)$ is a minimal sufficient statistic for θ .

• $X \sim N(\mu, \sigma^2)$. For a r.s. of size *n*, find minimal jss for μ and σ^2 .

RAO-BLACKWELL THEOREM

- Let $X_1, X_2, ..., X_n$ have joint pdf or pmf $f(x_1, x_2, ..., x_n; \theta)$ and let $S = (S_1, S_2, ..., S_k)$ be a vector of jss for θ . If T is an UE of $\tau(\theta)$ and $\varphi(T) = E(T|S)$, then
- *i*) $\varphi(T)$ is an UE of $\tau(\theta)$.
- *ii*) $\varphi(T)$ is a fn of *S*.
- *iii)* $Var(\varphi(T)) \leq Var(T)$ for all $\theta \in \Omega$.
- $\varphi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

SUFFICIENT STATISTICS

 If an UE of θ exists, than an UE of θ which is a function of a ss for θ also exists.

 The minimum variance unbiased estimator (MVUE) of θ, if exists, should be a function of a ss for θ.

ANCILLARY STATISTIC

- A statistic S(X) whose distribution does not depend on the parameter θ is called an ancillary statistic.
- An ancillary statistic contains no information about θ .
- An ancillary statistic and ss for θ are dependent.

• $X \sim N(\theta, 1)$. $X_1, X_2, ..., X_n$ be a r.s.

 $S^2 \sim Gamma[(n-1)/2,2/n]$ The distribution is free from θ . \downarrow S^2 is ancillary for θ .

COMPLETENESS AND UNIQUENESS

Let {f(x; θ), θ∈Ω} be a family of pdfs (or pmfs) and U(x) be an arbitrary function of x not depending on θ. If

$$E_{\theta}[U(X)] = 0 \text{ for all } \theta \in \Omega$$

requires that the function itself equal to 0 for all possible values of x; then we say that this family is a complete family of pdfs (or pmfs).

$$E_{\theta}[U(X)] = 0 \text{ for all } \theta \in \Omega \Longrightarrow U(x) = 0 \text{ for all } x_{49}$$

1. Show that the family { $Bin(n=2, \theta)$; $0 < \theta < 1$ } is complete.

• $X \sim Uniform(-\theta, \theta)$. Show that the family $\{f(x; \theta), \theta > 0\}$ is not complete.

• Consider the family $\{f(x; \theta), \theta \in \Omega\}$ where

$$f(x;\theta) = \frac{1}{\theta}, 0 < x < \theta$$

a) Show that the family is complete in $\Omega = \{\theta: 0 < \theta < 1\}.$

b) Show that the family is **not** complete in $\Omega = \{\theta: 1 < \theta < \infty\}$.

BASU THEOREM

• If *T*(*X*) is a *complete and minimal sufficient statistic*, then *T*(*X*) is independent of every ancillary statistic.

•
$$X \sim N(\mu, \sigma^2)$$
.
 \overline{X} : the mss for μ
 $S^2 \sim \chi^2_{n-1} \longrightarrow$ Ancillary statistic for μ

By Basu theorem, \overline{X} and S^2 are independent.

COMPLETE AND SUFFICIENT STATISTICS (css)

Y is a complete and sufficient statistic
 (css) for θ if Y is a ss for θ and the family

$$\left\{g\left(y;\theta\right);\theta\in\Omega\right\}$$

is complete.

The pdf of Y.

- 1) *Y* is a ss for θ .
- 2) u(Y) is an arbitrary function of *Y*. E(u(Y))=0 for all $\theta \in \Omega$ implies that u(y)=0for all possible Y=y.

LEHMANN-SCHEFFE THEOREM

- Let Y be a css for θ. If there is a function Y which is an UE of θ, then the function is the unique Minimum Variance Unbiased Estimator (MVUE) of θ.
 - $Y \cos \theta$.
 - T(y)=fn(y) and $E[T(Y)]=\theta$.

 $\rightarrow T(Y)$ is the MVUE of θ . \rightarrow So, it is the best estimator of θ .

THE MINIMUM VARIANCE UNBIASED ESTIMATOR

- Let Y be a css for θ. Since Y is complete, there could be only a unique function of Y which is an UE of θ.
- Let $U_1(Y)$ and $U_2(Y)$ be two function of Y. $W(Y)=U_1(Y)-U_2(Y)=0$ for all possible values of Y. Therefore, $U_1(Y)=U_2(Y)$ for all Y.
- Rao-Blackwell Theorem: If *T* is am unbiased estimator of *θ*, and *S* is a css for *θ*, then
 E[φ(T)]=E[E(T|S)]=θ and φ(T) is the unique MVUE of *θ*.

1. $X \sim Ber(\theta)$. Let X_1, X_2, \dots, X_n be a r.s.

Show that $Y = \sum_{i=1}^{n} X_i$ is a css for θ and find the MVUE of θ .

- 2. Let X have the pdf $f(x; \theta)$ with $\mu = 2\theta$ and $\sigma^2 = 2\theta^2$. Let $Y = X_1 + X_2 + ... + X_n$ be a css for θ for a r.s. of size *n*.
- a) Find the MVUE of θ .
- b) Find the MVUE of θ^2 .
- c) Find $E[X_1 + X_2/Y]$.

3. Let *X* have the pdf $f(x;\theta) = 3\theta^2 x^4, x \ge \theta, \theta > 0$

where $\mu = 3\theta/2$ and $\sigma^2 = 3\theta^2/4$. •Consider a r.s. $X_1, X_2, ..., X_n$. •Let $X_{(1)} = min(X_1, X_2, ..., X_n)$ with pdf $g_{X_{(1)}}(y) = 3n\theta^{3n} y^{-(3n+1)}, y \ge \theta$

and $E(X_{(1)})=3n\theta/(3n-1)$.

Find the MVUE of $\sigma^2 = 3\theta^2/4$.

EXPONENTIAL CLASS OF PDFS

X is a continuous (discrete) rv with pdf f(x; θ), θ∈Ω. If the pdf can be written in the following form

$$f(x;\theta) = e^{P(\theta)K(x) + S(x) + Q(\theta)}, a < x < b$$

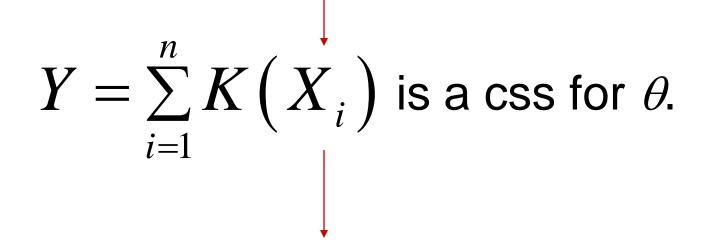
the pdf is a member of exponential class of pdfs of the continuous (discrete) type.

REGULAR CASE OF THE EXPONENTIAL CLASS OF PDFS

- We have a regular case of the exponential class of pdfs of the continuous type if
- a) Range of *X* does not depend on θ .
- b) $P(\theta)$ is a non-trivial continuous function of θ for $\theta \in \Omega$.
- c) $dK(x)/dx \neq 0$ and a continuous function of x for a < x < b.
- *d)* S(x) is a continuous function of x for a < x < b.

REGULAR CASE OF THE EXPONENTIAL CLASS OF PDFS

• Exponential Class+Regular Case+Random Sample



If *Y* is an UE of θ , *Y* is the MVUE of θ .

1. $X \sim N(\mu, \sigma^2)$ where μ is known. Find a css for σ^2 and find the MVUE of σ^2 .

2. $X \sim N(\mu, \sigma^2)$ where σ^2 is known. Find a css for μ and find the MVUE of μ .

REGULAR CASE OF THE DISCERETE EXPONENTIAL CLASS OF PDFS

- We have a regular case of the exponential class of pdfs of the continuous type if
- a) Range of X does not depend on θ .
- b) $P(\theta)$ is a non-trivial continuous function of θ for $\theta \in \Omega$.
- c) $K(x) \neq c$ for $x = a_1, a_2, ...$

- **3.** $X \sim Ber(\theta)$.
- a) Find a css for θ .
- b) Find the MVUE of θ .
- c) Find the MVUE of θ .

4. *X*~*Poisson*(θ). Find a css for θ and find the MVUE of $P(X \le 1) = (1 + \theta)e^{-\theta}$.

5. *X~Uniform(θ)*. Is this pdf a member of exponential class of pdfs? Why?

• *X*, $f(x; \theta)$, $\theta \in \Omega$, $x \in A$ (not depend on θ).

 $\lambda(x;\theta) = \ln f(x;\theta)$ $\lambda'(x;\theta) = \frac{\partial \ln f(x;\theta)}{\partial \theta}$ $\lambda''(x;\theta) = \frac{\partial^2 \ln f(x;\theta)}{\partial \theta^2}$ $f'(x;\theta) = \frac{\partial f(x;\theta)}{\partial \theta}$ $f''(x;\theta) = \frac{\partial^2 f(x;\theta)}{\partial \theta^2}$

69 69

$$\int_{A} f(x;\theta) dx = 1 \Rightarrow \frac{d}{d\theta} \int_{A} f(x;\theta) dx = 0$$

$$\Rightarrow \int_{A} f'(x;\theta) dx = 0$$

$$\Rightarrow \int_{A} f''(x;\theta) dx = 0$$

$$\lambda'(x;\theta) = \frac{\partial \ln f(x;\theta)}{\partial \theta} = \frac{f'(x;\theta)}{f(x;\theta)}$$

$$\lambda''(x;\theta) = \frac{f''(x;\theta)}{f(x;\theta)} - [\lambda'(x;\theta)]^2$$

70 70

$$E[\lambda'(X;\theta)] = \int_{A} \lambda'(x;\theta) f(x;\theta) dx = 0$$

$$E[\lambda''(X;\theta)] = \int_{A} \lambda''(x;\theta) f(x;\theta) dx$$

$$= \int_{A} \left\{ \frac{f''(x;\theta)}{f(x;\theta)} - [\lambda'(x;\theta)]^{2} \right\} f(x;\theta) dx$$

$$= \int_{A} f''(x;\theta) dx - \int_{A} [\lambda'(x;\theta)]^{2} f(x;\theta) dx$$

$$= 0 - E[\lambda'(x;\theta)]^{2}$$

$$\Rightarrow E[\lambda''(x;\theta)] = -E[\lambda'(x;\theta)]^2 = -V[\lambda'(x;\theta)]$$

The Fisher Information in a random variable *X*:

$$I[\theta] = E[\lambda'(x;\theta)]^2 = V[\lambda'(x;\theta)] = -E[\lambda''(x;\theta)] \ge 0$$

The Fisher Information in the random sample:

$$I_n[\theta] = nI(\theta)$$

- Let $X_1, X_2, ..., X_n$ be sample random variables.
- $Y=U(X_1, X_2, ..., X_n)$: a statistic not containing θ .
- $E(Y)=m(\theta)$.
- $Z = \lambda'(x_1, x_2, \dots, x_n; \theta)$ is a r.v.
- E(Z)=0 and $V(Z)=I_n(\theta)$.

• Cov(Y,Z) = E(YZ) - E(Y)E(Z) = E(YZ)

$$E(Y.Z) = \int \cdots \int u(x_1, x_2, \cdots, x_n) \lambda'_n(x_1, x_2, \cdots, x_n; \theta) dx_1 dx_2 \cdots dx_n$$

$$=\int\cdots\int u(x_1,\cdots,x_n)\frac{f'(x_1,\cdots,x_n;\theta)}{f(x_1,\cdots,x_n;\theta)}f(x_1,\cdots,x_n;\theta)dx_1\cdots dx_n$$

$$= \int \cdots \int u(x_1, \cdots, x_n) f'(x_1, \cdots, x_n; \theta) dx_1 \cdots dx_n = m'(\theta)$$

• $E(Y,Z) = m'(\theta)$ • $-1 \leq Corr(Y,Z) \leq l \Rightarrow -1 \leq \frac{Cov(Y,Z)}{\sqrt{V(Y)}\sqrt{V(Z)}} \leq 1$

•
$$0 \leq Corr(Y,Z)^2 \leq l \implies 0 \leq \frac{[Cov(Y,Z)]^2}{V(Y)V(Z)} \leq 1$$

The Cramer-Rao Inequality (Information Inequality)

$$0 \le \frac{[m'(\theta)]^2}{V(Y)I_n(\theta)} \le 1$$

75 75

 $V(Y) \ge \frac{[m'(\theta)]^2}{I_n(\theta)} \Rightarrow$ The Cramer - Rao Lower Bound

- *CRLB* is the lower bound for the variance of the unbiased estimator of $m(\theta)$.
- When V(Y) = CRLB, Y is the MVUE of $m(\theta)$.
- For a r.s.,

$$V(Y) \ge \frac{[m'(\theta)]^2}{nI(\theta)} \Rightarrow$$
 The Cramer - Rao Lower Bound

EFFICIENT ESTIMATOR

- Y is an efficient estimator (EE) of its expectation, m(θ), if its variance reaches the CRLB.
- An EE of $m(\theta)$ may not exist.
- The EE of $m(\theta)$, if exists, is unique.
- The EE of $m(\theta)$ is the unique MVUE of $m(\theta)$.
- If the MVUE of m(θ) is not EE of m(θ), then an EE of m(θ) does not exist.

ASYMPTOTIC EFFICIENT ESTIMATOR

• *Y* is an asymptotic EE of $m(\theta)$ if

 $\lim_{n \to \infty} E(Y) = m(\theta)$ and $\lim_{n \to \infty} V(Y) = CRLB$

EXAMPLES

- 1. $X \sim Poi(\mu)$.
- a) Find CRLB for μ .
- b) Find CRLB for $e^{-\mu}$.
- c) Find MLE of μ .
- d) Show that $\left(\frac{n-1}{n}\right)_{i=1}^{\frac{n}{\sum X_i}}$ is an UE of $e^{-\mu}$.

EXAMPLES

. *X*~*Uniform*(*0*, *θ*)

EXAMPLES

3. *X*~*Exp*($1/\theta$). Find an EE of θ , if exists.

STRUCTURAL FORM

• If $\frac{d \ln L(\theta)}{d\theta} = k(\theta) (\hat{\theta} - \theta), k(\theta) \neq 0$

where $k(\theta)$ is free from $x_1, x_2, ..., x_n$, then automatically $\hat{\theta}$ is an UE of θ and $\hat{\theta}$ is the MVUE of θ .

Remark: $Var(\hat{\theta}) = \frac{1}{k(\theta)}$.

EXAMPLE

X~*Exp*(θ). Find an EE of θ , if exists.

LIMITING DISTRIBUTION OF MLEs

- $\hat{\theta}$: MLE of θ (obtained by differentiation)
- X_1, X_2, \dots, X_n is a random sample.

 $m(\hat{\theta})^{asymptotically} \sim N\left(m(\theta), RCLB_{m(\theta)} = \frac{\left[m'(\theta)\right]^2}{nI(\theta)}\right)$ $\hat{\theta} \stackrel{asympt.}{\sim} N\left(\theta, \frac{1}{nI(\theta)}\right)$ $\Rightarrow \frac{\hat{\theta} - \theta}{\left[1 \right]} = \sqrt{nI(\theta)} \left(\hat{\theta} - \theta \right) \xrightarrow{d} N(0, 1)$

LIMITING DISTRIBUTION OF MLEs

• Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ be MLEs of $\theta_1, \theta_2, \dots, \theta_m$.

$$\hat{\theta}_{i}^{asympt.} N\left(\theta_{i}, RCLB \right)$$

$$m\left(\hat{\theta}_{i}\right)^{asympt.} N\left(m\left(\theta_{i}\right), RCLB \right), i = 1, 2, ..., m$$

• EE of $m(\theta) = m(\hat{\theta}) = fn(ss \text{ for } \theta)$

•If *Y* is an EE of θ , then Z=a+bY is an EE of $a+bm(\theta)$ where *a* and *b* are constants.

EXAMPLE

- $X \sim N(\mu, \sigma^2)$ where σ^2 is known. Assume that we have a r.s of size *n*.
- a) Find a Fisher Information.
- b) Find the EE of μ , if it exists.
- c) Find the EE of μ^2 , if it exists.

EXAMPLE

- $X \sim Exp(\theta^2)$. Assume that we have a r.s of size *n*.
- a) Find a Fisher Information.
- b) Using CRLB, show that \overline{X} is the EE of θ^{2} .
- c) Find the EE of θ^4 , if it exists. If it does not exist, find an asymptotic EE of θ^4 and specify its asymptotic distribution.
- d) Find the MVUE of θ^4 , if it exists.