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STATISTICAL INFERENCE

Determining certain unknown properties of
a probabillity distribution on the basis of a
sample (usually, a r.s.) obtained from that

distribution
i

Point Estimation: 4=5
Interval Estimation: 3< 4 <8 ( )

Hypothesis Testing: H :u=5
H :u#5




STATISTICAL INFERENCE

 Parameter Space (£2): The set of all
possible values of an unknown parameter,
g 0.

A pdf with unknown parameter: f(x; 6), L.

« Estimation: Where in 2, @is likely to be?

{f(x; 0), 6eQ}—. The family of pdfs




STATISTICAL INFERENCE

« Statistic: A function of rvs (usually a
sample rvs in an estimation) which does not
contain any unknown parameters.

X ,S? etc

» Estimator of an unknown parameter 0:4
A statistic used for estimating 6.

0 :estimator =U (X, X,,-++, X )
X : Estimator

¢ /,\ An observed value

x : Estimate : A particular value of an estimator ~ *



METHODS OF ESTIMATION

Method of Moments Estimation,
Maximum Likelihood Estimation



METHOD OF MOMENTS
ESTIMATION (MME)

» Let X, X,,...,. X, be ar.s. from a population
with pmf or pdf f(x; 6, 6,,..., §). The MMEs
are found by equating the first k population
moments to corresponding sample moments
and solving the resulting system of
equations.

Population Moments Sample Moments

:uk:EI:Xk] Mk::]-iznllxik



METHOD OF MOMENTS
ESTIMATION (MME)

:u:Ml H, =M, Hy =M,
n n 3 1o
E(X)= EX, E(X)= Ex: E(X)= 32X

Continue this until there are enough equations
to solve for the unknown parameters.

soon...



EXAMPLES

« X~EXp(6). For ar.s of size n, find the MME
of 6.



EXAMPLES

« X~Gamma(«, p). For ar.s of size n, find the
MMESs of o and p.



DRAWBACKS OF MMES

» Although sometimes parameters are
positive valued, MMEs can be negative.

* If moments does not exist, we cannot find
MMES.
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MAXIMUM LIKELIHOOD
ESTIMATION (MLE)
* Let X, X,,...,.X be ar.s. from a population

with pmf or pdf f(x; &, 6,,..., §), the
likelihood function is defined by

L(Ql’ez,...’gk‘Xl,xz’...,xn): f(xl’xz,...’xn;@ 62’”°’ek

17

)
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MAXIMUM LIKELIHOOD
ESTIMATION (MLE)

* For each sample point (x,,...,x,), let

A

0,(Xes %) 0, (XX,
be a parameter value at which

L(E, ..., G| Xy, ...,x,) attains its maximum as a

function of (4,..., ), with (x4, ...,x,) held fixed. A
maximum likelihood estimator (MLE) of
parameters (é,,..., §) based on a sample (X,,...,X})
§ 0,(%eer %)+, 0, (XX,
* The MLE Is the parameter point for which the
observed sample is most likely.
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« Let X~Bin(n,p). One observation on X is available,

EXAMPLES

and it is known that n is either 2 or 3 and p=1/2

or 1/3. Our objective is to estimate the pair (n,p).
X 2,1/2) | (2,1/3) | (3,1/2) | (3,1/3) | Max. Prob.
0 1/4 4/9 1/8 8/27 4/9
1 1/2 4/9 3/8 12/27 1/2
2 1/4 1/9 3/8 6/27 3/8
3 0 0 1/8 1/27 1/8

((2,1/3) if x=0

(2,1/2) if x =1
(M, p)(x) = .

(3,1/2) ifx=2

(31/2) ifx=3
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MAXIMUM LIKELIHOOD
ESTIMATION (MLE)

* Itis convenient to work with the logarithm of the
likelihood function.

* Suppose that f(x;6,, 8, ..., §) 1S a positive,
differentiable function of 4,, 6,,..., . If a
supremum @0, ,---,6, exists, it must satisfy the

11727

likelihood equations

oInL(6,6,,,0,; %, %, %, )
00,

J

* MLE occurring at boundary of 2 cannot be
obtained by differentiation. So, use inspection.

-0, j=12,..k
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EXAMPLES

1. X~Exp(&), >0. For ar.s of size n, find the
MLE of &.

15



EXAMPLES

2. X~N(u,0°). For ar.s. of size n, find the
MLEs of x and o°.
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EXAMPLES

3. X~Uniform(0,6), &=0. For a r.s of size n,
find the MLE of &
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EXAMPLES

4. X~Uniform(6, 6+1), 6>0. For a r.s of size n,
find the MLE of 6.
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INVARIANCE PROPERTY OF THE
MLE

+ If 6 is the MLE of 6, then for any function
76), the MLE of «0) is (9)

Example: X~N(u,0%). For ar.s. of size n, the
MLE of xis X. By the invariance property
of MLE, the MLE of /2 is X*.
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ADVANTAGES OF MLE

Often yields good estimates, especially for
large sample size.

Usually they are consistent estimators.
Invariance property of MLES

Asymptotic distribution of MLE is Normal.
Most widely used estimation technique.
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DISADVANTAGES OF MLE

Requires that the pdf or pmf is known except the
value of parameters.

MLE may not exist or may not be unique.

MLE may not be obtained explicitly (numerical or
search methods may be required.). It is sensitive
to the choice of starting values when using
numerical estimation.

MLESs can be heavily biased for small samples.

The optimality properties may not apply for small
samples.
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SOME PROPERTIES OF
ESTIMATORS

« UNBIASED ESTIMATOR (UE): An
estimator 6 is an UE of the unknown
parameter 6, If

E[é]zé’forall 0cQ

Otherwise, It Is a Biased Estimator of 4.

Bi@as (9) =E [é’] — 6 —[Bias of 0 for estimating 0

If 6 is UE of 6, Bias(0)=0.
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SOME PROPERTIES OF
ESTIMATORS

* ASYMPTOTICALLY UNBIASED
ESTIMATOR (AUE): An estimator & is
an AUE of the unknown parameter 6, if

Bieas(é’)

+0 but lim Bias(é) -0

N—>00 0
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SOME PROPERTIES OF
ESTIMATORS

« CONSISTENT ESTIMATOR (CE): An
estimator ¢ which converges in probability
to an unknown parameter @for all Q) Is

called a CE of 6.
0—->¢6.

* MLEs are generally CEs.

24



EXAMPLES

1. For ar.s. of size n,

E(X)=ux= X isan UE of 4.
By WLLN,

X—>u

— X isa CE of u.
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EXAMPLES

2. X~Uniform(0,6), &=0. For ar.s of size n, Is
the MLE of #an UE and a CE of 6?
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EXAMPLES

3. Let X, X,,...,X, be ar.s. from NB(2,6)
distribution

f(x;0)=(x+1)6*(1-6) ,x=0,1,..,0<O<1

2(1-0 . 2(1-06
where u= (9 )andU = (92 )-

a) Find the MLE of 0.
b) Find the MLE of p.
c) Find an UE of 1/ 6.




MEAN SQUARED ERROR (MSE)

 The Mean Square Error (MSE) of an
estimator @ for estimating éis

I\/ISE( ) E[@ 6’] Var(@) (Bi@as(é’))2
If I\/ISE(H) is smaller, § is the better
estimator of 0.
For two estimators, 8, and 8, of 9, if
MSE(&’)< MSE(H) 0e

28

0 is better estimator of 6.



EXAMPLE

Let X;, X,,...,X, be ar.s. from Uniform(0, )
distribution

a) Find the MLE of 0.
b) Find the MME of 0.

c) Compare MSEs of MLE and MME of 6
and comment on which one Is better
estimator of 0.
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MEAN SQUARED ERROR
CONSISTENCY

« T, Is called mean squared error
consistent (or consistent in quadratic
mean) if E{T —6}*—>0 as n—w.

Theorem: T, Is consistent in MSE Iff
1) Var(T,)—0 as n—o.

i) imE[T ]=6.

Nn—oo

o If E{T,—-0}*—>0 as n—x, T, is also a CE of &
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SUFFICIENT STATISTICS

X, f(x;0), 00

« X;, Xy, ..., X, be a sample rvs

Y=U(X;, X,,...,X, ) IS a statistic.

e A sufficient statistic, Y Is a statistic which
contains all the information for the estimation
of 6.
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SUFFICIENT STATISTICS

* Given the value of Y, the sample contains
no further information for the estimation of
o.

* Y Is a sufficient statistic (ss) for @if the
conditional distribution of sample rvs given
the value of y of Y, 1.e. h(x,X,, ...,x,|y) does not
depend on @for every given Y=y.

* Ass for @is not unique.
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SUFFICIENT STATISTICS

* The conditional distribution of sample rvs
given the value of y of Y, Is defined as

(X, %+, X, Y5 0)

g(y:o)

R T

f
N(X %00+ %,[Y) =

e If YIS a ss for 6, then Not depend on @ for every given y.

X e X -
o R

ss for 0 may include y or constant.
33

* Also, the conditional range of X, given y not depend on 6.




SUFFICIENT STATISTICS

EXAMPLE: X~Ber(p). For ar.s. of size n,
find a ss for p Is exists.
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SUFFICIENT STATISTICS

e IfYIsassfor @ then a 1-1 transformation
of Y, say Y,=fn(Y) Is also a ss for 6.

* Neyman’s Factorization Theorem: Y is a
ss for G iff

L’((H) - kl(y;\e)kz(xﬂxz"”’xn )\

‘ The likelihood function || Does not contain any other x; | | Not depend on &for
every given y (also in the

conditional range of x;.)

where k, and k, are non-negative
functlons and k does not depend on @ for

every giveny. N



EXAMPLES

1. X~Ber(p). For ar.s. of size n, find a ss for
p IS exists.
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EXAMPLES

2. X~N(u,0%) where uis known. For ar.s. of
size n, find a ss for o°.
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EXAMPLES

3. Let X, X,,...,.X be ar.s. from Uniform(0,0)
distribution. Find a ss for 0, If exists.
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EXAMPLES

4. Let X, X,,....X, be ar.s. from Cauchy(0)
distribution. Find a ss for 0, If exists.

1

f(x0)= 7Z'(1-|—(X—(9)2)

—00 < X <00,—00< @ <0
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SUFFICIENT STATISTICS

* A ss may not exist. Jointly ss Y,,Y,, ..., Y,
may needed.

* A ss for 6 Is not unique, If exists.

* If the MLE of 6 exists and unique and if a
ss for O exists, then MLE is a function of a
ss for 0.
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EXAMPLES

5. X~N(u,0%). For ar.s. of size n, find jss for u
and o°.
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EXAMPLES

6. X~Uniform(64, ,6, ). For a r.s. of size n, find
Jjss for 6, and 6, .
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MINIMAL SUFFICIENT STATISTICS

* A ss T(X) iIs called minimal ss if, for any
other ss T°(X), T(x) Is a function of T"(x).

« THEOREM: Let f(x;8) be the pmf or pdf of
a sample X;, X,,...,.X,. Suppose there exist
a function T(x) such that, for two sample
points Xy,X,,...,x, and y,,Y,, ...,y,, the ratio

f (X, Xy, X, 0)

f(y11y21 1yn19)
IS constant as a function of 0 Iff T(X)=T(y).

Then, T(X) Is a minimal sufficient statistic
for 6.
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EXAMPLE

« X~N(u,0%). For ar.s. of size n, find minimal
jss for 4 and o°.
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RAO-BLACKWELL THEOREM

« Let X, X,,..., X, have joint pdf or pmf
f(X{,X,, ...,x,; ) and let S=(S,,S,,...,S,) be a
vector of jss for 0. If T Is an UE of 7«6
and o(T)=E(T|S), then

1) o(T)I1s an UE of 76 .

1) ¢o(T)I1s afn of S.

1) Var(e(T) )<Var(T) for all 802,

* ¢(T) Is a uniformly better unbiased estimator

of «(6) .
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SUFFICIENT STATISTICS

* If an UE of 0 exists, than an UE of 0 which
IS a function of a ss for 0 also exists.

« The minimum variance unbiased estimator
(MVUE) of 0, If exists, should be a function
of a ss for 0.

46



ANCILLARY STATISTIC

A statistic S(X) whose distribution does not
depend on the parameter @is called an
ancillary statistic.

* An ancillary statistic contains no information
about 6.

* An ancillary statistic and ss for @ are
dependent.

a7



EXAMPLE

« X~N(61). X;, X,,.... X, be ar.s.

S2~ Gammal(n-1)/2,2/n}

|

The distribution iIs free from 6.

l

S<is ancillary for 6.
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COMPLETENESS AND
UNIQUENESS

« Let {f(x; ), 02} be a family of pdfs (or
pmfs) and U(x) be an arbitrary function of x
not depending on 6. If

E,[U(X)]=0forall 0Q
requires that the function itself equal to O
for all possible values of x; then we say

that this family is a complete family of pdfs
(or pmfs).

E,[U(X)]=0forall §eQ=U(x)=0 forall x,



EXAMPLES

1. Show that the family {Bin(n=2,6); 0<6<1}
IS complete.
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EXAMPLES

o X~Uniform(—6,6). Show that the family
{f(x; 8), >0} is not complete.
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EXAMPLES

 Consider the family {f(x; 6), 02} where
f(x;@):2,0<x<¢9

a) Show that the family is complete In
2={6.0<6<1}.

b) Show that the family is not complete in
Q={0.1<6<d}.
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BASU THEOREM

 If T(X) Is a complete and minimal sufficient
statistic, then T(X) Is independent of every
ancillary statistic.

* X~N(u,0%).

X :the mss for u

2 . -
52~ ' n_1—— Ancillary statistic for p

By Basu theorem, X and S? are independent.
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COMPLETE AND SUFFICIENT
STATISTICS (css)

* Y Is a complete and sufficient statistic
(css) for @if Y Is a ss for @ and the family

{Q(V;Qé’eﬂ}

The pdf of Y.

IS complete.

1) Yis ass for 6.

2) u(Y) is an arbitrary function of Y.
E(u(Y))=0 for all 802 implies that u(y)= O
for all possible Y=y.




LEHMANN-SCHEFFE THEOREM

« LetY be a css for @. If there i1s a function Y
which Is an UE of 6, then the function iIs
the unigue Minimum Variance Unbiased
Estimator (MVUE) of 6.

* Y css for 6.
* T(y)=fn(y) and E[T(Y)]=6.

—T(Y) Is the MVUE of 6@
—S0, It IS the best estimator of 4.
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THE MINIMUM VARIANCE
UNBIASED ESTIMATOR

 LetY be acss for 6. Since Y is complete, there
could be only a unigue function of Y which is an
UE of 6.

* Let U,(Y) and U,(Y) be two function of Y.
W(Y)=U,(Y)-U,(Y)=0 for all possible values of Y.
Therefore, U,(Y)=U,(Y) for all Y.

« Rao-Blackwell Theorem: If T IS am unbiased
estimator of & and S Is a css for @, then
E[o(T)]=E[E(T|S)]=6 and ¢(T) is the unique MVUE
of 6.
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EXAMPLES

1. X~Ber(6). Let X, X,,...,.X be ar.s.

Show that Y = ZX is a css for @and find
the MVUE of 6’

S7



EXAMPLES

2. Let X have the pdf f(x;8) with =26 and
o°=26. Let Y=X,+X,+...+X_ be a css for
@ for ar.s. of size n.

a) Find the MVUE of &
b) Find the MVUE of &.
c) Find E[X;+X,]Y].




EXAMPLES

3. Let X have the pdf
f(x60)=30°x"x26,0>0

where 4=30/2 and o*= 3&/4.

Consider ar.s. X, X,,....X,,.
Let Xp=min(Xy, X,, ..., ) with pdf

gy, (¥) =306y ",y 2 0
and E(X,)=3nd/(3n-1).
Find the MVUE of o= 3&/4.
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EXPONENTIAL CLASS OF PDFS

« X IS a continuous (discrete) rv with pdf
f(x; ), 0. If the pdf can be written in the
following form

f (X,H) _ eP(H)K(x)+S(x)+Q(6?),a <X <b

the pdf is a member of exponential class
of pdfs of the continuous (discrete) type.

60



REGULAR CASE OF THE

EXPONENTIAL CLASS OF PDFS

We have a regular case of the exponential
class of pdfs of the continuous type Iif

Range of X does not depend on 6.

P(6) is a non-trivial continuous function of @ for
=P

dK(x)/dxz0 and a continuous function of x for
a<x<b.

S(x) Is a continuous function of x for a<x<b.
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REGULAR CASE OF THE
EXPONENTIAL CLASS OF PDFS

» Exponential Class+Regular Case+Random Sample

N

Y =ZK(Xi) is a css for 6.

T

If Y Is an UE of 8, Y Is the MVUE of 6.
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EXAMPLES

1. X~N(u,0%) where uis known. Find a css
for o2 and find the MVUE of o°.
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EXAMPLES

2. X~N(u,0%) where o2 is known. Find a css
for 2 and find the MVUE of L.
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REGULAR CASE OF THE
DISCERETE EXPONENTIAL
CLASS OF PDFS

We have a regular case of the

exponential class of pdfs of the
continuous type If

Range of X does not depend on 6.

P(6) i1s a non-trivial continuous function of
@ for 0.

K(x)zc for x=a,,a,,....
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EXAMPLES

3. X~Ber(6).

a) Find a css for 6.

b) Find the MVUE of 6.
c) Find the MVUE of &.




EXAMPLES

4. X~Poisson(6). Find a css for #and find the
MVUE of P(X<1)=(1+ &)e-°.
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EXAMPLES

5. X~Uniform(é). Is this pdf a member of
exponential class of pdfs? Why?
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FISHER INFORMATION AND
INFORMATION CRITERIA

e X, f(X;0), 0, x €A (not depend on 6).
A(x;0)=1In (x;0)

oln f(x;0)

00
0% In f(x;60)

067
'(x:0) = of (x;0)

00

A(x;0)=

A"(x;0) =

0% (x;0)
f"(x;0)= ’
(x:6) 00°

69
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FISHER INFORMATION AND
INFORMATION CRITERIA

My =1 O Oy —
£f(x,9)dx—1:>@£f(x,«9)dx—0

= [f'(x;6)dx =0
= [ f"(x;6)dx =0

oo oInf(x;0) f'(x;0)
A(%0)= 00  f(x0)

w(60)=" 59 o)

(x:6)
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FISHER INFORMATION AND
INFORMATION CRITERIA

E[V(X;0)]=[2(x;0)f (x;0)dx =0

E[A"(X;0)]= jA/I”(x; 0)f (x;0)dx

{ o )) A(x0)P }f(x;@)dx

J
i '(x;0)dx — j[/I (x;0) f(x;6)dx
0-

E[2'(x0)f

71
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FISHER INFORMATION AND
INFORMATION CRITERIA

= E[2"(x;0)] = —E[X(x;0)] = V[ (x;0)]

The Fisher Information in a random variable X:

1[6]=E[2(x;0)] =V [ (x;0)]=-E[1"(x;0)]= 0

The Fisher Information in the random sample:
1.[0]=nl1(0)

72
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CRAMER-RAO LOWER BOUND
(CRLB)

* Let X,,X,,...,.X, be sample random
variables.

« Y=U(X,,X,,...,X,): a statistic not containing
6

» E(Y)=m(6).
o Z=A'(x, Xy, ... x 0 1sar.v.
« E(2)=0and V(2)=I,(6).

73
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CRAMER-RAO LOWER BOUND
(CRLB)

. Cov(Y,2)=E(YZ)-E(Y)E(Z)=E(YZ)

E(Y.Z)=[--[u(X, Xg, -+, X )An (X, X+, Xy ; @)X AXs - - - 0X,

_.[ j(l’ ’n)f(Xl,-- PRY )f(l ‘9)d1 -dx,

= [+ Julq - %0 ) £ 104+ % 0)d - dxy = m'(6)

74
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CRAMER-RAO LOWER BOUND
(CRLB)

* E(Y.Z)=m(6)

Cov(Y,Z)
o -1<Corr(Y,Z)<1=-1< <1
(1:2) NOWNV@)
) [Cov(Y,Z)[
* 0 <Corr(Y,2)°<1 = 0< <1
V(Y V(Z)
U
(nformation Inequalty) | _ [m@)F
VY)IL©)

' 2
V(Y)=> m'(©)] = The Cramer - Rao Lower Bound

11(6)



CRAMER-RAO LOWER BOUND
(CRLB)

« CRLB is the lower bound for the variance
of the unbiased estimator of m(6).

 When V(Y)=CRLB, Y Is the MVUE of m(6).
e Forar.s,,

' 2
V(Y)> m'(©)] — The Cramer - Rao Lower Bound
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EFFICIENT ESTIMATOR

Y Is an efficient estimator (EE) of its
expectation, m(6), If its variance reaches
the CRLB.

An EE of m(6) may not exist.
The EE of m(6), If exists, Is unique.
The EE of m() is the unigue MVUE of m(6).

If the MVUE of m(6) is not EE of m(), then an
EE of m(&) does not exist.
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ASYMPTOTIC EFFICIENT
ESTIMATOR

* Y Is an asymptotic EE of m(6) If

lim E(Y )=m(0)

N—o0

and
IimV(Y):CRLB

N—>00
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EXAMPLES

1. X~Poi(u).
a) Find CRLB for p.
b) Find CRLB for e,
c) Find MLE of u. |
2 X,
d) Show that (”‘1}:1 Is an UE of e,

n
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EXAMPLES

2. X~Uniform(0, 6)

80
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EXAMPLES

3. X~Exp(1/6). Find an EE of 4, If exists.
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STRUCTURAL FORM

* I dinL(9)

de
where k(8) Is free from x;,X,, ...,x,,, then
automatically ¢ is an UE of @and ¢ is the
MVUE of é.

Remark:var(d)= k(lé?)'

= k(0)(@-0) k(6)=0

82
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EXAMPLE

X~Exp(6). Find an EE of 6, If exists.
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LIMITING DISTRIBUTION OF

A MLEs
« 6§ : MLE of @ (obtained by differentiation)

o X1, X,, ..., X, Is arandom sample.

m(é)asymfmy N [m(e), RCLB = [m'(g)]zj

m(0) nl(6)

éasympt.N p 1
large n ’n|(6)
60 B A d
1 = ni(0)(6-0)—>N(01)

it




LIMITING DISTRIBUTION OF

MLES
. Let 8,6,,---,6. be MLEs of 6,, 6, ..., 0.

. asympt. (

6 ~ N

Q,R%LB)

m(é)asyfpt'N(m(@),RCL j,izl,z,...,m
(&)

* EE of m(6)= m(é) = fn(ss for 6)

If Y Is an EE of 6, then Z=a+bY is an EE

of a+bm(&) where a and b are constants.



a)
b)
C)

X~N(u,0%) where o2 is known. Assume

EXAMPLE

that we have a r.s of size n.

-1NG
-1NG

=Male

a Fisher Information.
the EE of v, If it exists.
the EE of p?, if it exists.
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EXAMPLE

« X~Exp(&). Assume that we have ar.s of
size n.

a) Find a Fisher Information.
b) Using CRLB, show that X is the EE of &

c) Find the EE of &, if it exists. If it does not
exist, find an asymptotic EE of ¢ and
specify its asymptotic distribution.

d) Find the MVUE of &, if it exists.
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