
DISTRIBUTION FITTING
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What Is Distribution Fitting?

 Distribution fitting is the procedure of selecting a statistical 

distribution that best fits to a data set generated by some 

random process. In other words, if you have some random 

data available, and would like to know what particular 

distribution can be used to describe your data, then 

distribution fitting is what you are looking for.
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Who and Why Should Use Distributions?

 Random factors affect all areas of our life, and businesses 

striving to succeed in today's highly competitive environment 

need a tool to deal with risk and uncertainty involved. Using 

probability distributions is a scientific way of dealing with 

uncertainty and making informed business decisions. 

 In practice, probability distributions are applied in such 

diverse fields as actuarial science and insurance, risk analysis, 

investment, market research, business and economic 

research, customer support, mining, reliability engineering, 

chemical engineering, hydrology, image processing, physics, 

medicine, sociology, demography etc.
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Why Is It Important To Select The Best 

Fitting Distribution?

 Probability distributions can be viewed as a tool for dealing with uncertainty: 
you use distributions to perform specific calculations, and apply the results to 
make well-grounded business decisions. However, if you use a wrong tool, 
you will get wrong results. If you select and apply an inappropriate 
distribution (the one that doesn't fit to your data well), your subsequent 
calculations will be incorrect, and that will certainly result in wrong 
decisions. 

 In many industries, the use of incorrect models can have serious 
consequences such as inability to complete tasks or projects in time leading to 
substantial time and money loss, wrong engineering design resulting in 
damage of expensive equipment etc. In some specific areas such as hydrology, 
using appropriate distributions can be even more critical. 

 Distribution fitting allows you to develop valid models of random processes 
you deal with, protecting you from potential time and money loss which can 
arise due to invalid model selection, and enabling you to make better business 
decisions. 
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Can't I Just Assume The Normal 

Distribution?

 The Normal distribution has been developed more than 250 years ago, and is probably one of the oldest 

and frequently used distributions out there. So why not just use it? 

It Is Symmetric

 The probability density function of the Normal distribution is symmetric about its mean value, and this 

distribution cannot be used to model right-skewed or left-skewed data: 

It Is Unbounded

 The Normal distribution is defined on the entire real axis (-Infinity, +Infinity), and if the nature of your 

data is such that it is bounded or non-negative (can only take on positive values), then this distribution is 

almost certainly not a good fit: 

Its Shape Is Constant

 The shape of the Normal distribution does not depend on the distribution parameters. Even if your data is 

symmetric by nature, it is possible that it is best described by one of the heavy-tailed models such as the 

Cauchy distribution:
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Which Distribution Should I Choose?
 You cannot "just guess" and use any other particular 

distribution without testing several alternative models as this 
can result in analysis errors. 

 In most cases, you need to fit two or more distributions, compare 
the results, and select the most valid model. The "candidate" 
distributions you fit should be chosen depending on the nature of 
your probability data. For example, if you need to analyze the time 
between failures of technical devices, you should fit non-negative
distributions such as Exponential or Weibull, since the failure time 
cannot be negative. 

 You can also apply some other identification methods based on 
properties of your data. For example, you can build a histogram 
and determine whether the data are symmetric, left-skewed, or 
right-skewed, and use the distributions which have the same shape. 
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Which Distribution Should I Choose?

 To actually fit the "candidate" distributions you selected, you 

need to employ statistical methods allowing to estimate 

distribution parameters based on your sample data. The 

solution of this problem involves the use of certain 

algorithms implemented in specialized software. 

 After the distributions are fitted, it is necessary to determine 

how well the distributions you selected fit to your data. This 

can be done using the specific goodness of fit tests or visually by 

comparing the empirical (based on sample data) and 

theoretical (fitted) distribution graphs. As a result, you will 

select the most valid model describing your data. 
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Explanatory Data Analysis (EDA)
 EDA includes:

 Descriptive statistics (numerical summaries): mean, median, range, variance, 
standard deviation, etc. In SPSS choose Analyze: Descriptive Statistics: 
Descriptives. 

 Kolmogorov-Smirnov & Shapiro-Wilk tests: These methods test whether one 
distribution (e.g. your dataset) is significantly different from another (e.g. a normal 
distribution) and produce a numerical answer, yes or no. Use the Shapiro-Wilk test if the 
sample size is between 3 and 2000 and the Kolmogorov-Smirnov test if the sample size is 
greater than 2000. Unfortunately, in some circumstances, both of these tests can 
produce misleading results, so "real" statisticians prefer graphical plots to tests such as 
these.

 Graphical methods: 
 frequency distribution histograms

 stem & leaf plots

 scatter plots

 box & whisker plots

 Normal probability plots: PP and QQ plots

 Graphs with error bars (Graphs: Error Bar)
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Goodness-of-Fit Tests

 The chi-square test is used to test if a sample of data came 

from a population with a specific distribution. 

 Another way of looking at that is to ask if the frequency 

distribution fits a specific pattern.

 Two values are involved, an observed value, which is the 

frequency of a category from a sample, and the expected 

frequency, which is calculated based upon the claimed 

distribution. 
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Goodness-of-Fit Tests

 The idea is that if the observed frequency is really close to 

the claimed (expected) frequency, then the square of the 

deviations will be small. The square of the deviation is 

divided by the expected frequency to weight frequencies. A 

difference of 10 may be very significant if 12 was the 

expected frequency, but a difference of 10 isn't very 

significant at all if the expected frequency was 1200. 
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Goodness-of-Fit Tests
 If the sum of these weighted squared deviations is small, the 

observed frequencies are close to the expected frequencies and 

there would be no reason to reject the claim that it came from 

that distribution. Only when the sum is large is the a reason to 

question the distribution. Therefore, the chi-square 

goodness-of-fit test is always a right tail test. 
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Goodness-of-Fit Tests

 The chi-square test is defined for the hypothesis: 

H0: The data follow a specified distribution.

Ha: The data do not follow the specified distribution.

Test Statistic: For the chi-square goodness-of-fit computation, the data 

are divided into k bins and the test statistic is defined as 

where Oi is the observed frequency and Ei is the expected frequency. 
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Assumptions

 The data are obtained from a random sample 

 The expected frequency of each category must be at least 5. 

This goes back to the requirement that the data be normally 

distributed. You're simulating a multinomial experiment 

(using a discrete distribution) with the goodness-of-fit test 

(and a continuous distribution), and if each expected 

frequency is at least five then you can use the normal 

distribution to approximate (much like the binomial). 
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Properties of the Goodness-of-Fit Test 

 The data are the observed frequencies. This means that there 

is only one data value for each category. Therefore, ... 

 The degrees of freedom is one less than the number of 

categories, not one less than the sample size. 

 It is always a right tail test. 

 It has a chi-square distribution. 

 The value of the test statistic doesn't change if the order of 

the categories is switched.
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Prussian Cavalry getting kicked in the head

 X: the number of fatalities per regiment/year in the Prussian 

cavalry due to horse kicks. 

Number of 

deaths/unit

/year

Number of 

unit-years

0 109

1 65

2 22

3 3

4 1

>4 0

Total 200

It seems that the Poisson distribution is appropriate. Is this 

true, as one would expect if the kicking deaths occurred at 

random? Or were there some regiments in which people 

tended to put their heads in the wrong place a little too 

often?

H0: Deaths due to kicking occurred at random. (i.e. they 

followed a Poisson distribution).

HA: Kicking deaths were not randomly distributed.
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Prussian Cavalry getting kicked in the head

 To test this with a goodness of fit test, we must first know how to 

generate the null distribution. The problem is that we don't have 

an a priori expectation for the rate of horse-kick fatalities, and we 

must therefore estimate the rate from the data itself. The average 

number of kicking deaths per year is :

[109 (0) + 65 (1) + 22 (2) + 3 ( 3) + 1 (4)] / 200 = 0.61 deaths/year

 So we can use this as our estimate of the rate of kicking fatalities.
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Prussian Cavalry getting kicked in the head

 From this we can calculate the expected frequencies of the numbers of 

deaths per year, given the Poisson distribution:

Number of 

deaths/unit/year

Expected relative 

frequency

Expected count 

(relative freq. x total number)

0 0.54 109

1 0.33 66

2 0.10 20

3 0.02 4

4 0.003 1

>4 0.0004 0

Total 200 200
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Prussian Cavalry getting kicked in the head
 We then must combine across classes to ensure E.I. > 4:

Number of deaths/unit/year Observed Expected 

0 109 109

1 65 66

2 22 20

>2 4 5

Total 200 200

• So now there are 4 classes and we have estimated one parameter (the average rate) from the 

data, we have 4 - 1 - 1 = 2 df. 

•We can calculate that 2 = 0.415, and the critical value of 2 with 2 df and a = 5% is
2

0.05,2 = 5.991, we are not in the tail of the distribution, and we cannot reject the null 

hypothesis that the deaths are occurring at random. In fact the match to the Poisson 

distribution is remarkably good.
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One-Sample Kolmogorov-Smirnov 

Goodness-of-Fit Test

 The Kolmogorov-Smirnov Z test, also called the 
Kolmogorov-Smirnov D test, is a goodness-of-fit test which 
tests whether a given distribution is not significantly different 
from one hypothesized (ex., on the basis of the assumption of 
a normal distribution). It is a more powerful alternative to 
chi-square goodness-of-fit tests when its assumptions are 
met. Whereas the chi-square test of goodness-of-fit tests 
whether in general the observed distribution is not 
significantly different from the hypothesized one, the K-S test 
tests whether this is so even for the most deviant values of 
the criterion variable. Thus it is a more stringent test. 
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One-Sample Kolmogorov-Smirnov 

Goodness-of-Fit Test
 As illustrated in the SPSS dialog for the Kolmogorov-Smirnov 

test, SPSS supports the following hypothetical distributions: 

uniform, normal, Poisson, and exponential.
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One-Sample Kolmogorov-Smirnov 

Goodness-of-Fit Test

 In the SPSS output example below, the sample variable Educational Level is 

tested against a hypothetical normal distribution. The bar chart, not part of 

the K-S module, shows the distribution of Educational Level. The K-S test 

tests if it may reasonably be assumed that this sample distribution reflects an 

underlying normal distribution. 
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K-S Goodness-of-Fit Test

The two-tailed significance of the test statistic is very small (.000), meaning it is 
significant. A finding of significance, as here, means Educational Level may not be 
assumed to come from a normal distribution with the given mean and standard 
deviation. It might still be that sample subgroups (ex., females), with different means 
and standard deviations, might test as being plausibly from a normal distribution, but 
that is not tested here. 
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QQ Plots
 The assumption of a normal model for a population of responses 

will be required in order to perform certain inference 

procedures. Histogram can be used to get an idea of the 

shape of a distribution. However, there are more sensitive tools 

for checking if the shape is close to a normal model – a Q-Q 

Plot.

 Q-Q Plot is a plot of the percentiles (or quintiles) of a 

standard normal distribution (or any other specific distribution) 

against the corresponding percentiles of the observed data. If the 

observations follow approximately a normal distribution, the 

resulting plot should be roughly a straight line with a positive 

slope.
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QQ Plot
 The graphs below are examples for which a normal model for the response is not 

reasonable.

1. The Q-Q plot above left indicates the existence of two clusters of observations.

2. The Q-Q plot above right shows an example where the shape of distribution appears to be skewed 
right.

3. The Q-Q plot below left shows evidence of an underlying distribution that has heavier tails compared to 
those of a normal distribution.
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QQ Plot
 The Q-Q plot below right shows evidence of an underlying distribution which is 

approximately normal except for one large outlier that should be further 

investigated.
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QQ Plot

 It is most important that you can see the departures in the 

above graphs and not as important to know if the departure 

implies skewed left versus skewed right and so on. A 

histogram would allow you to see the shape and type of 

departure from normality.
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