
Simple Linear Regression



Simple Linear Regression 

• Our objective is to study the relationship 
between two variables X and Y.

• One way to study the relationship between 
two variables is by means of regression.

• Regression analysis is the process of 
estimating a functional relationship between 
X and Y. A regression equation is often used 
to predict a value of Y for a given value of X.

• Another way to study relationship between 
two variables is correlation. It involves 
measuring the direction and the strength of 
the linear relationship. 



First-Order Linear Model = 

Simple Linear Regression Model

0 1y= x   
where

y = dependent variable

x = independent variable

0= y-intercept

1= slope of the line

 = error variable



Deterministic Component of 
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LEAST SQUARES MODEL

(Best Possible Fit)
• To estimate the parameters 0 and 1, we 

use least square method.
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Example

Data: Determine the straight line that fits this 

data:
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Example (Contd.)
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Scatter Plot and Fitted line

y = - 5.3562 + 3.3988x 
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ERROR

• The scatterplot shows that the points are not 

on a line, and so, in addition to the the 

relationship we also describe error:

• The Y’s are the responses (or dependent) 

variable.  The x’s are the predictors or 

independent variable, and the epsilon’s are the 

errors.  We assume they are normal, mutually 
independent, and have variance 2.

0 1 ,  i=1,2,...,ni i iy x    



• LEAST SQUARES: Minimize

• The minimizing  y-intercept and  slope are 
given by                   .  We use the notation:

• The quantities                     are called the 
residuals.  If we assume a normal error, these 
should look normal.
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WHAT FORM DOES THE 
ERROR TAKE?

• Each observation may be decomposed 

into two parts:

• The first part is used to determine the 
fit, and the second to estimate the error.

• We estimate the variance of the error by 
using the sum of squares error:
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ESTIMATE OF 2

• We estimate 2 by
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Simple Linear Regression Model

• The Simple Linear Regression Model

• The Least Squares Regression Line

where

0 1y x    

0 1
ˆ ˆŷ x  
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EXAMPLE

• An educational economist wants to 

establish the relationship between an 

individual’s income and education. He takes 

a random sample of 10 individuals and asks 

for their income (in $1000s) and education 

(in years). The results are shown below. 

Find the least squares regression line.

11 12 11 15 8 10 11 12 17 11

25 33 22 41 18 28 32 24 53 26

Education

Income



DEPENDENT AND 

INDEPENDENT VARIABLES
• The dependent variable is the one that we 

want to forecast or analyze. 

• The independent variable is hypothesized 
to affect the dependent variable.

• In this example, we wish to analyze 
income and we choose the variable 
individual’s education that most affects 
income. Hence, y is income and x in 
individual’s education



FIRST STEP
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SUM OF SQUARES
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The Least Squares Regression 

Line
• The least squares regression line is

• Interpretation of coefficients:

*The sample slope                   tells us that on 

average for each additional year of education, 

an individual’s income rises by $3.74 thousand. 

* The y-intercept is                       . This value has 

no meaning.
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ERROR VARIABLE

•  is normally distributed.

• E() = 0

• The variance of  is 2.

• The errors are independent of each 

other.

• The estimator of 2 is

where
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EXAMPLE (contd.)

• For the previous example

Hence, SSE is

Therefore,
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INTERPRETATION OF

• The value of s can be compared with the 

mean value of y to provide a rough guide 

as to whether s is small or large.

• Since             and s=4.27, we would 

conclude that s is relatively small, which 

indicates that the regression line fits the 

data quite well. 

30.2y 

2s



EXAMPLE

• Car dealers across North America use the 

red book to determine a cars selling price 

on the basis of important features.  One of 

these is the car’s current odometer 

reading.

• To examine this issue 100 three year old 

cars in mint condition were randomly 

selected; their selling price and odometer 

reading were observed.



Portion of the data file

Odometer Price

37388 5318

44758 5061

45833 5008

30862 5795

….. …

34212 5283

33190 5259

39196 5356

36392 5133



Example 

(Minitab Output)
Regression Analysis

The regression equation is
Price = 6533 - 0.0312 Odometer

Predictor       Coef       StDev          T     P
Constant     6533.38       84.51      77.31 0.000(SIGNIFICANT)

Odometer   -0.031158    0.002309     -13.49 0.000(SIGNIFICANT)

S = 151.6       R-Sq = 65.0%     R-Sq(adj) = 64.7%

Analysis of Variance

Source       DF          SS          MS         F        P
Regression    1     4183528     4183528    182.11    0.000
Error        98     2251362       22973
Total        99     6434890



Example

• The least squares regression line is

ˆ 6533.38 0.031158y x 
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Interpretation of the coefficients

• means that for each additional 
mile on the odometer, the price decreases by an 
average of 3.1158 cents. 

• means that when x = 0 (new car), 
the selling price is $6533.38 but x = 0 is not in 
the range of x. So, we cannot interpret the value 
of y when x=0 for this problem. 

• R2=65.0% means that 65% of the variation of y 
can be explained by x. The higher the value of 
R2, the better the model fits the data.

1
ˆ 0.031158  

0
ˆ 6533.38 



Excel Example

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.806308

R Square 0.650132

Adjusted R Square 0.646562

Standard Error 151.5688

Observations 100

ANOVA

df SS MS F Significance F

Regression 1 4183527.721 4183528 182.1056 4.44346E-24

Residual 98 2251362.469 22973.09

Total 99 6434890.19

Coefficients Standard Error t Stat P-value

Intercept 6533.383 84.51232199 77.30687 1.22E-89

Odometer -0.03116 0.002308896 -13.4947 4.44E-24



Example 

(Excel Scatter Plot)

Odometer .vs. Price Line Fit  Plot
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TESTING THE SLOPE

• Are X and Y linearly related?
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TESTING THE SLOPE

• The Rejection Region: Reject H0 if

t < -t/2,n-2 or t > t/2,n-2.

• If we are testing that high x values lead to 
high y values, HA: 1>0. Then, the rejection 
region is t > t,n-2.

• If we are testing that high x values lead to 
low y values or low x values lead to high y 
values, HA: 1 <0. Then, the rejection region 
is t < - t,n-2.



Assessing the model 

Example
• Excel output

• Minitab output

Coefficients Standard Error t Stat P-value

Intercept 6533.4 84.512322 77.307 1E-89

Odometer -0.031 0.0023089 -13.49 4E-24

Predictor       Coef       StDev          T        P

Constant     6533.38       84.51      77.31    0.000

Odometer   -0.031158    0.002309     -13.49    0.000



Coefficient of Determination
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Using the Regression Equation

• From the fitted line for the example:

• Suppose we would like to predict the 

selling price for a car with 40,000 miles on 

the odometer

ˆ 6,533 0.0312

6,533 0.0312(40,000)

$5,285
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Prediction and Confidence 

Intervals

• Prediction Interval of y for x=xg: The 
confidence interval for predicting the particular 
value of y for a given x

• Confidence Interval of E(y|x=xg): The 
confidence interval for estimating the expected 
value of y for a given x
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Solving by Hand

(Prediction Interval)

• From previous calculations we have the 

following (example):

• Thus a 95% prediction interval for 

x=40,000 is:

ˆ 5285, 151.6, 4309340160, 36,009xy s SS x   

21 (40,000 36,009)
5,285 1.984(151.6) 1

100 4,309,340,160

5,285 303


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
•The prediction is that the selling price of the car  

will fall between $4982 and $5588.



Solving by Hand

(Confidence Interval)

• Thus a 95% confidence interval of 

E(y| x=40,000) is:

35285,5

160,340,309,4

)009,36000,40(
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•The mean selling price of the car will fall between $5250

and $5320.



Prediction and Confidence 

Intervals Graph
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Regression Diagnostics

• How to diagnose violations and how to deal with 
observations that are unusually large or small.

• Residual Analysis:

Non-normality

Heteroscedasticity

Non-independence of the errors

Outlier

Influential observations



STANDARDIZED RESIDUALS

• The standardized residuals are calculated 

as

where                         . The standard 

deviation of the i-th residual is
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NON-NORMALITY

• The errors are normally distributed. To 

check the normality of errors,we use 

histogram of the residuals or normal 

probability plot of residuals.



HETEROSCEDASTICITY

• The error variance           should be constant. 

When this requirement is violated, the condition 

is called heteroscedasticity.

• To diagnose hetersocedastisticity or 

homoscedasticity, one method is to plot the 

residuals against the predicted value of y. If the 

points are distributed evenly around the 

expected value of errors which is 0, this means 

that the error variance is constant.
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NON-INDEPENDENCE OF 

ERROR VARIABLE
• The values of error should be 

independent. When the data are time 

series, the errors often are correlated (i.e., 

autocorrelated or serially correlated). To 

detect autocorrelation we plot the 

residuals against the time periods. If there 

is no pattern, this means that errors are 

independent.



OUTLIER

• An outlier is an observation that is unusually 
small or large. Several possibilities to have an 
outlier are

• Error in recording the data. Detect the error 
and correct it

• The point should not have been included in the 
data (belongs to another population)  Discard 
the point from the sample

• The observation is unusually small or large 
although it belong to the sample and there is no 
recording error.  There is nothing to do.



INFLUENTIAL 

OBSERVATIONS

• One or more observations have a large 

influence on the statistics.

Scatter Plot of One Influential Observation
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Regression Diagnostics
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EXERCISE

• It is doubtful that any sports collects more 

statistics than baseball. The fans are 

always interested in determining which 

factors lead to successful teams. The table 

below lists the team batting average and 

the team winning percentage for the 14 

American League teams at the end of a 

recent season. 



Team-B-A Winning%

0.254 0.414

0.269 0.519

0.255 0.500

0.262 0.537

0.254 0.352

0.247 0.519

0.264 0.506

0.271 0.512

0.280 0.586

0.256 0.438

0.248 0.519

0.255 0.512

0.270 0.525

0.257 0.562

y = winning % and x = team batting average



a) LS Regression Line
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• The least squares regression line is

• The meaning                    is for each 
additional batting average of the team , 
the winning percentage increases by an 
average of 79.41%. 
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b) STANDARD ERROR OF 

ESTIMATE

So,

• Since s=0.0567 is small, we would conclude 
that s is relatively small, which indicates that the 
regression line fits the data quite well. 
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c) Do the data provide sufficient evidence 

at the 5% significance level to conclude that 

higher team batting average lead to higher 

winning percentage?

0:

0:

1

10









AH

H

1

1 1

ˆ

ˆ
Test statistic:  t 1.69      (p-value=.058)

s


 
 

Conclusion: Do not reject H0 at  = 0.05. The 

higher team batting average do not lead to higher 

winning percentage



d) Coefficient of correlation
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The 19.25% of the variation in the winning percentage

can be explained by the batting average.



e) Predict with 90% confidence the winning 

percentage of a team whose batting average 

is 0.275.
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90% PI for y:

•The prediction is that the winning 

percentage of the team will fall between 

39.85% and 62.53%.


