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4.1 Rotational Motion and the Rigid Rotor 

Consider a particle of mass m moving in the 3D physical space in the absence of forces, but  under the 

constraint that its distance, r, from a fixed point O is constant, r=R0 (Figure 4.1). Such a particle has only 

two degrees of freedom because its distance from the center is never changing. The physical motion of 

the particle is rotation about the point O. We will call this type of rotation in which r=R0 is fixed as “rigid” 

rotation in order to distinguish it from the more general “nonrigid” rotation in which r may also be 

changing during the rotation. A particle executing rigid rotation is called a “rigid rotor”. To describe its 

motion we set up a Cartesian axis system that is fixed in space with origin at the point O.  Cartesian type 

variables (x, y, z) are not suitable for this problem because of the constraint: x2+y2+z2=R0
2. Instead, 

spherical polar variables are ideal here since then we can simply set r=R0, and take the two angles  and 

 as our independent variables. 
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Figure 4.1 A “rigid rotor” is a particle of mass m constrained to move on the surface of a fictitious sphere 

with radius r=R0.  

4.2 Angular Momentum 

“Angular momentum” is an important concept in both the classical and quantum descriptions of the 

rotational motion of a particle. The angular momentum, , of a classical particle about the point O is a 

vector quantity defined by 

          eq 4.1 

The direction of  is perpendicular to the plane formed by the position vector  and the linear 

momentum vector . Its magnitude is, L= rp sin(α), where r and p are the magnitudes of the position and 

linear momentum vectors, respectively, and α is the angle between them.  For the classical rigid rotor, 

r=R0, and you should convince yourself that α =90˚; hence, p=L/ R0, and the kinetic energy, p2/2m, of the 

rigid rotor can be written as 

T   Kinetic energy of a rigid rotor (Classical)      eq 4.2 

where 

I=mR0
2           eq 4.3 

is the moment of inertia of the particle; it is a characteristic property of the rigid rotor. There are no 

forces, and we take V=0. Hence, the classical Hamiltonian of the rotor is 



Chem350-Quantum Chemistry Lecture Notes 4 Fall 2011 

 
 

2 
 

H            eq 4.4 

Classically, H=E, and the energy E is conserved during the motion. This means that L is also a constant of 

motion. Classically allowed values of L follow from those of E; i.e. all values from 0 to infinity. 

The quantum mechanical Hamiltonian operator is 

  Hamiltonian operator of the rigid rotor     eq 4.5 

We need to find an explicit expression for the operator  in terms of the independent variables  and . 

This is accomplished in two steps: First, one writes the components of classical   in eq 4.1 in terms of 

Cartesian variables: 

Lx= ypz – zpy          eq 4.6a 

Ly= zpx – xpz          eq 4.6b 

Lz= xpy – ypx          eq 4.6c 

The reason is: the operator replacement  works only in Cartesian variables. The 

quantum mechanical operators corresponding to those in eqs 4.6a-c are thus 

         eq 4.7a 

         eq 4.7b 

         eq 4.7c 

In the second step, the Cartesian variables in these expressions are converted into spherical polar 

variables (r, , ) using standard rules of calculus. The results are 

       eq 4.8a 

       eq 4.8a 

          eq 4.8c 

In a similar way it is found that 

     eq 4.9 

In obtaining these expressions from eqs 4.7a-c, it is not assumed that r is a constant; i.e. the full set of (r, 

, ) variables are used. It is interesting that the variable r cancels out in the transformation from 
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Cartesian to polar variables so that the operators above are functions of only the two independent angle 

variables  and . Expressions in eqs 4.8a-c and 4.9 are valid for rigid as well as nonrigid rotation. 

It can be shown that the components (eqs 4.8a-c) of the angular momentum operator do not commute 

with each other, but all three components do commute with . This means that we can take  with 

only one of the three components as a set of commuting operators; it is conventional to take  and . 

When there are several operators as in here, it is important to identify the set of commuting operators 

among them because of the general principle that commuting operators have the same set of 

eigenfunctions. This principle helps in solving the Schrödinger equation. 

The eigenvalue-eigenfunction equation for  is a simple one, and we can readily solve it. Let us denote 

the eigenfunctions and the associated eigenvalues by the (scalar) symbols  and Lz, respectively. Using 

eq 4.8c, the equation we want to solve is 

          eq 4.10 

Explicitly, it is 

          eq 4.11 

We can guess that the eigenfunctions are 

          eq 4.12a 

where A is a normalization constant, and m is another constant related to the eigenvalue1 

          eq 4.12b 

The question now is: what are the allowed values of the constant m? The answer to this question is 

provided by the general principle that all functions in quantum theory must be single-valued, as 

discussed previously. The range of the variable  in eq 4.12a is from 0 to 2π such that =0 and =2π 

represent the same physical point. It is therefore necessary that the functions of eq 4.12a must satisfy: 

(0)= (2π), or explicitly (since A can not be zero) 

          eq 4.12c 

This equation is satisfied only when m is zero or an integer. Thus the allowed values of m, and therefore 

of Lz are 

        eq 4.12d 

You should show that the value of the normalization constant in eq 4.12a is: A=1/(2π)1/2. Note that in 

contrast to the particle in a 1D box problem, here the value m=0 does not make  zero, and is therefore 

allowed. Also, the functions  with negative m values are different from those with positive values (i.e. 

                                                           
1
 Please do not confuse the quantum number m here with the mass of the particle. 
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the effect of replacing m with –m is not just a change in the sign of A, in this case). We will label these 

functions with the quantum number m: m (e.g. 0, 1, -1, etc.). 

4.3 Rigid Rotor with one degree of freedom  

Suppose that the motion of the rigid rotor is further constrained so that in addition to the restriction 

r=R0, it is confined to move in the x-y plane of Figure 4.1 (i.e.  is fixed at π/2). Now the particle has only 

one degree of freedom, namely  (Figure 4.2). We will refer to such a particle as a “1 df rotor”. It is also 

called “particle in a ring” because the path traversed by the classical particle is a circle with radius R0. 
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Figure 4.2 Rigid rotation in 2D physical space. The magnitude of the position vector r is constant, equal 

to R0. 

What are the allowed energies of the “1 df rotor”? In this problem, the only nonzero component of the 

angular momentum of the particle is , and therefore  = , now. The Schrödinger 

equation is . Since I is a constant, eigenfunctions of  are the same as those of , which in 

turn are the same as those of : i.e. m (note that   are commuting operators). Thus, 

m=m, and the allowed energies, Em, of the “1 df rotor” are 

Em= B m2,                 eq 4.13 

where 

           eq 4.14 

 is called the “rotational constant” of the rigid rotor. It has energy units. Energy levels of the “1 df rotor” 

are shown in Figure 4.3. All levels except the ground state are doubly degenerate. Note also the 

similarity in the spacing of the energy levels to those in the “particle in a 1D box” problem. 
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Figure 4.3 Allowed energy levels of a “1 df rotor”. 

 

We interpret the rotational state functions m of the “1 df rotor” as follows. When the rotor is in the 

rotational ground state, 0=A, its Lz=0, and hence it has no angular momentum. In states m with 

|m|>0, the particle does have angular momentum. From eq 4.12d, positive values of m give positive Lz 

values, and such states m describe counterclockwise (around the z-axis) rotation of the rotor as in 

Figure 4.2. Likewise, states with negative m describe clockwise rotation. 

Exercise 4.1 What is the rotational ZPE of the rotor? 

Exercise 4.2 What is the ground state energy of a system of 6 noninteracting (i.e. independent) electrons 

if it is assumed that each electron is rotating like a “1 df rotor”? Remember the Pauli principle. Give your 

answer in terms of B. Since the mass of the electron is known, what additional data do you need in order 

to calculate B? 

Exercise 4.3 Show by explicit integration that the functions m with A=1/(2π)1/2 are orthonormal. The 

volume element is d. 

 

4.4 Rigid Rotor with two degrees of freedom  

We now return to the original problem in which the rotor has two degrees of freedom (Figure 4.1). We 

will refer to it as the “2 df rotor”. Its Hamiltonian is given in eq 4.5 where  is the full expression in eq 

4.9. The problem of solving the Schrödinger equation, , for the “2 df rotor” is essentially that 

of finding eigenvalues and eigenfunctions of the  operator. The latter problem is well known in 

mathematics, and we will simply quote the results. Denoting the eigenfunctions and the eigenvalues by 

the symbols Y and L2, respectively, the eigenvalue-eigenfunction equation for  is  

 

          eq 4.15 
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The solutions for Y are the standard functions  known in the literature as the “spherical 

harmonics”, with associated eigenvalues 

 

       eq 4.16 

 

The functions  are labeled by two quantum numbers such that for a given l, allowed values of m are 

integers restricted to the range  l ≤ m ≤ l. Thus there are (2l +1) different functions  , all with the 

same l, but differing in their m labels. These functions have a “product” form in the variables  and  : 

 

        eq 4.17 

 

 where the -dependent factor is a real function, and the -dependent factor is the function in eq 4.12a. 

The latter function is complex-valued for m ≠ 0. In other words, the functions  are real for m=0 (i.e. 

), and complex for m ≠ 0. 

 

Using eq 4.17, you should verify that the spherical harmonics are also eigenfunctions of the  operator 

(eq 4.8c): 

 

         eq 4.18 

 

This fact is expected because we know that the two operators  and  commute, and therefore they 

should have simultaneous eigenfunctions. 

 

It was pointed out in Lecture Notes 2 that eigenfunctions of quantum mechanical operators have the 

orthogonality property (eq 2.20). Thus, the value of the integral 

 

          eq 4.19 

 

is zero for all choices of l, m, l’, and m’ except for the case where both l=l’ and m=m’, in which case the 

integral becomes the normalization integral, and its value is 1.
2
 The integral in eq 4.19 is a double integral 

because there are two independent variables (  and  ) of integration. The volume element is, 

, which is the angle-dependent part of the volume element in spherical polar variables (see 

Lecture Notes 2, section 2.2). 

 

The Hamiltonian operator of the “2 df rotor” in eq 4.5 is =c , where the constant c=1/2I.  The two 

operators  and  obviously commute, and therefore the functions  are the solutions of the 

Schrödinger equation, , for the rigid rotor. Indeed, 

 

     eq 4.20 

                                                           
2
 All sources that tabulate explicit expressions for the spherical harmonics present them in normalized form. 
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The allowed energies of the “2 df rotor” are therefore 

 

El = B l(l+1),  l = 0, 1, 2, …       eq 4.21 

 

The energy levels are determined by the l quantum number only, whereas the rotational wavefunctions 

 depend on both the l and m quantum numbers. As pointed out above, for a given value of l there are 

(2l+1) different functions  . Therefore, a given energy El is (2l+1)-fold  degenerate. 

 

 

4.5 Rotational energy levels of a diatomic molecule 
 

The results obtained above for the properties of a “2 df rotor” are mainly applied to the rotational 

motion of a diatomic molecule about its center of mass (c.m.). Figure 4.4 shows a model of a diatomic 

molecule. The two masses rotate in concert about the c.m., satisfying the condition  

 

m1m2
r1r2

c.m.

L

 
Figure 4.4 Rigid rotation of a diatomic molecule about its center of mass. 

 

m1r1=m2r2          eq 4.22 

 

The distance between the masses is the bond length R0, assumed to be “rigid” (i.e. unchanging) during 

the rotation. We have 

 

r1 + r2 = R0          eq 4.23 

 

Using eqs 4.22-23, one finds that 

 

r1 = (m2/M) R0  and  r2 = (m1/M) R0     eq 4.24 

 

where M=m1+m2. The moment of inertia of a diatomic molecule about the c.m. is defined as: I= m1r1
2 + 

m2r2
2. Using eq 4.24, one gets for I 

 

I = R0
2           eq 4.25 

 

where 
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          eq 4.26 

is called the “reduced mass”. 

 

The rotation of a diatomic molecule about its c.m. is entirely equivalent to the rotation of a “2 df rotor” 

shown in Figure 4.1. The fixed point O in that figure corresponds to the c.m. in the diatomic molecule. 

The only difference is that the reduced mass  must be used for m in the calculation of I (eq 4.25), and 

therefore the rotational constant B (eq 4.14). 

 

In applying the rigid rotor results to the rotational states of diatomic molecules, chemists use the capital 

letters J and M in place of l and m. Thus they write the allowed rotational energies of a diatomic molecule 

as (from eq 4.21) 

 

EJ = B J(J+1),  J = 0, 1, 2, …       eq 4.27 

 

and the rotational wavefunctions as YJM. The degeneracy, gJ, of a rotational level EJ is 2J+1. The spacing 

between neighboring energy levels is 

 

EJ+1 – EJ = 2B (J+1)         eq 4.28 

 

The rotational levels of a diatomic molecule are shown in Figure 4.5. 
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Figure 4.5 Allowed rotational energy levels, EJ, of a diatomic molecule in the rigid-rotor approximation. 

The degeneracies, gJ=2J+1, are also indicated. 

 

 

Exercise 4.4 The bond length of the 12C16O molecule is 112.8 pm. Calculate (a) the reduced mass and (b) 

the rotational constant of 12C16O. (c) Calculate the wavelength of the photon absorbed when a 12C16O 

molecule initially in the J=2 level, makes a transition to the J=3 level. 

 

Note: In such calculations, you should use the appropriate “isotopic” masses, and not the average 

atomic masses given in the periodic table. The reason is: differences in the value of B due to different 

isotope masses are experimentally detectable. So, search for the masses of C-12 and O-16 isotopes. 


