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5.1 Boltzmann distribution of molecules over the energy levels 

In experiments designed to measure properties of individual molecules we always work with a 

macroscopic sample (in a closed container) containing a very large number, Ntot, of identical molecules, 

and usually at room temperature. The sample is usually a gas under “ideal gas conditions”, because it is 

necessary to minimize intermolecular interactions; otherwise we could not assume that the molecules 

are independently moving. Nevertheless, the molecules in the sample are continuously colliding with 

each other so that a molecule in a low energy level at one instant may be excited into a higher energy 

level a moment later. It is obviously not possible to keep track of the energy level of a given molecule, 

but when thermal equilibrium in the macroscopic sample is reached we expect that the average number 

of molecules at each energy level will be constant in time. An important property of a macroscopic 

system in thermal equilibrium is its absolute temperature T. The average number of molecules with 

energy Ej  in the sample at a given T is called the “population” of the one-molecule energy level Ej.
1 

The population Nj of a molecular energy level Ej in a sample which is in thermal equilibrium at absolute 

temperature T is given by the Boltzmann distribution law: 

  Boltzmann distribution     eq 5.1 

where C is a constant that is the same for all energy levels, gj is the degeneracy of the energy level Ej, 

and kB is the Boltzmann constant. The latter is the gas constant per molecule: 

 kB = R/NA =1.38065x10-23 J/K.        eq 5.2 

The exponential, , in eq 5.1 is called the “Boltzmann factor”. Let us label the energy levels as E1, 

E2, …, starting with the ground level, and in increasing order of energy. Then the population of the jth 

energy level relative to that of the ground level is 

         eq 5.3 

This expression shows that at absolute zero, T=0, only the ground state will have a nonzero population; 

i.e. all molecules in the sample will be in the ground energy level E1 at absolute zero. At higher 

temperatures, excited energy levels can also be populated. The extent of population of an excited level 

Ej depends critically on the value of the positive dimensionless ratio, , in the exponential 

of eq 5.3.2 The term  has energy units, and is a measure of average thermal energy per molecule.  

Only when the energy of the jth level relative to the ground state, (Ej-E1), is not too large relative to kBT, 

the level may have a significant population. In particular, populations of highly excited levels are 

negligible at the usual temperatures employed in experiments. 

 

                                                           
1
 The concept of “population” of a one-molecule energy level is similar to “occupation numbers” discussed 

previously. It is the average occupation number of a level at temperature T. 
2
 For positive x values, the exponential function e

-x
 very rapidly approaches zero as x increases. 
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Wavenumber unit for frequency and energy.  From the relation =c for a photon, we may write 

   Conversion between cm-1 and Hz units of frequency   eq 5.4 

where  is called the “wavenumber”. The SI unit of  is m-1, but it is conventional to use cm-1, 

instead. We will follow this practice and use the cm-1 unit in what follows. The speed of light in eq 5.4 

must then be in cm/s unit, i.e. c=2.998x1010 cm/s. 

The relation in eq 5.4 may be regarded as a conversion from one unit of frequency to another one. Thus 

the symbol  on the right side can be viewed as the frequency of a photon in the cm-1 unit, whereas  on 

the left side as the same thing but in Hz (i.e. s-1) unit, and c as the conversion factor between the two 

units of frequency. For example, a frequency of 33.4 cm-1 corresponds to 1x1012 s-1 by eq 5.4, and it is 

legitimate to write 33.4 cm-1 = 1x1012 s-1. This idea of using cm-1 as a unit of frequency is generalized to 

the vibrational frequencies of molecules. For example, the experimentally determined vibrational 

frequency of the H35Cl molecule is universally reported as 2990.95 cm-1. 

The energy of a photon may be expressed in terms of the wavenumber as 

          eq 5.6 

This relation suggests that  can also be considered as the energy of the photon, but in cm-1 unit, the 

conversion factor to the joule unit being hc. Thus cm-1 can be used either as a unit of frequency or as a 

unit of energy, with conversion factors of c and hc, respectively, to the SI units. Whether frequency or 

energy is meant is inferred from the context in which it is used. Thus, it is not uncommon to read in 

textbooks that a certain photon has an energy of e.g. 33.4 cm-1. This usage of cm-1 as a unit of energy is 

generalized to the energies of material particles 

 Conversion between cm-1 and SI units of energy    eq 5.7 

In any calculation involving several terms, it is necessary to do conversions only when one or more 

terms have different units. As an example, let us consider the rotational energy levels of the H35Cl 

molecule: EJ=BJ(J+1) where B=10.397 cm-1 is an  energy quantity. If we want to calculate,   , 

needed in the Boltzmann factors, say at a temperature of T=300 K, for several values of J, we may first 

calculate kBT in cm-1 by 1.381x10-23(300) /hc =208.6 cm-1, and then proceed; instead of converting B into 

joules and employing the value of kBT in joules. 

  

The degeneracy of rotational level EJ is 2J+1. Thus the relative populations of the rotational levels at 

T=300 K are 
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Table 5.1 Relative populations of rotational levels of H35Cl molecules at T=300 K.  B=10.397 cm-1. 

J 0 1 2 3 4 5 6 7 8 9 

NJ/N0 1 2.715 3.707 3.849 3.321 2.465 1.602 0.920 0.470 0.214 

 

5.2 Selection rules in transitions between rotational levels 

When our sample of H35Cl molecules is irradiated with light in the microwave (MW) region, photons can 

be absorbed by the molecules; a molecule that is initially in a rotational level EJ may be excited into a 

higher energy level EJ’ after absorbing a photon of energy equal to (EJ’ -EJ). It can be shown that in light 

absorption, only those transitions where 

ΔJ=±1  Selection rule in rotational transitions     eq 5.8 

are allowed. In MW absorption (i.e. in “pure” rotational transitions) the plus sign applies so that only the 

J J+1 transitions are permitted.3 Thus the possible energies of MW photons that can be absorbed by 

this sample are given by 

      eq 5.9 

Table 5.2 MW absorption by a sample of H35Cl molecules at T=300 K.  B=10.397 cm-1. 

Jinitial 0 1 2 3 4 5 6 7 8 9 

NJ/N0 1 2.715 3.707 3.849 3.321 2.465 1.602 0.920 0.470 0.214 

h photon 2B 4B 6B 8B 10B 12B 14B 16B 18B 20B 

photon/cm
-1

 20.79 41.59 62.38 83.18 104.0 124.8 145.6 166.4 187.1 208.0 

Relative intensities of the absorption lines are directly proportional to the relative populations of the 

initial rotational levels. Thus the most intense absorption occurs with light of frequency 8B=83.18 cm-1 

(Figure 5.1). 
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Figure 5.1 Rotational absorption spectrum of a sample of H

35
Cl molecules at T=300 K. Note that absorption lines 

are equidistant with a spacing of 2B=20.79 cm
-1

. 

Not every diatomic molecule absorbs MW radiation. There is a gross selection rule which states that 

only polar molecules undergo rotational transitions. Thus homonuclear diatomics such as H2, O2, etc. 

have no rotational absorption spectra (i.e. they are transparent to MW radiation). 

 

                                                           
3
 We will see later that light absorption can cause a simultaneous excitation in rotational as well as vibrational 

levels of a molecule. In such a case which requires (IR) photons with larger energies than here, both signs in eq 5.8 
must be considered. Here, we are assuming that the vibrational level is not changing in the absorption process. 
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5.3 Vibrational energy levels of a diatomic molecule 

Vibrational motion of a diatomic molecule AB is defined as the motion of the two atoms along the line 

joining them under the constraint that the c.m. is fixed at a point in space (Figure 5.2). 

c.m.

0 x
m2 m1

A B

R0

R

 
Figure 5.2 The small arrows attached to the masses indicate their new positions when the equilibrium distance, R0, 

between them is altered to R. In the figure R>R0, but it is also possible that R<R0 in which case the directions of the 

small arrows should be reversed. 

The attractive potential energy, V(R), between the two atoms in a diatomic molecule is a function of the 

distance R between them. The shape of a typical vibrational potential energy is shown in Figure 5.3. It 

takes its minimum value at the equilibrium bond length, R0. For a given molecule, V(R) is obtained by 

solving the Schrödinger equation for the electrons in the molecule as a function of the internuclear 

distance R, as will be discussed later in this course. For now, we assume that the function V(R) for the 

particular diatomic molecule under study is given to us. 

0 R0 R

V(R)

De

 
Figure 5.3 Vibrational potential energy curve for a diatomic molecule; De is the “electronic” dissociation energy of 

the molecule. 

5.3.1 Harmonic approximation 

The function V(R) can be expanded into a Taylor series about the point R0 as follows: 

 eq 5.10 

The first term, V(R0), is a constant which we take as zero, and the second term is zero since the first 

derivative V’(R0)=0 at the minimum of V.  Letting x = R – R0 , and assuming that the terms involving third 

and higher derivatives in eq 5.10 could be neglected as giving small corrections, one obtains the 

“harmonic approximation” to the true V: 

  Harmonic potential      eq 5.11 
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where 

k=V’’(R0)  Force constant       eq 5.12 

is called the “force constant”. The SI unit of k is N/m, or equivalently J/m2. The significance of the 

harmonic approximation is that with Vh the vibrational Schrödinger equation can be solved analytically.4 

Results will be given below. 

It is shown in the appendix that the classical Hamiltonian for the vibrational motion in the harmonic 

approximation is 

          eq 5.13 

where  is the reduced mass. Classically H=E where the vibrational energy E is a constant of 

the motion. At a given E, the classical motion is vibration (also called “oscillation”) between the turning 

points –xt and xt with the frequency (Figure 5.4) 

 
Figure 5.4 Classically at a given E, |x| can not exceed |xt|. The physical motion is oscillation between the two 

turning points. 

  Classical frequency of vibration     eq 5.14 

Note that  is the same at all energies E, but xt increases as E increases. A particle with the Hamiltonian 

of eq 5.13 is called a “harmonic oscillator”. 

 

5.3.2 The Quantum Mechanical Harmonic Oscillator 

The quantum mechanical Hamiltonian operator follows from eq 5.13 by the operator replacement: 

 

                                                           
4
 The vibrational Schrödinger equation using the exact V(R) can always be solved by numerical methods. However, 

analytical solutions are conceptually much more illuminating than numerical results because they are easily 
applicable to all diatomic molecules whereas in the numerical method one needs to do a separate calculation for 
each specific molecule. 
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          eq 5.15 

and the Schrödinger equation for the vibrational energy levels of a diatomic molecule in the harmonic 

approximation is 

        eq 5.16 

The solution of this equation is too complicated to discuss here. We will quote the results from the 

literature. It is found that well-behaved solutions for  (see Lecture Notes 2, Section 2.3) exist only for a 

special set of quantized energies given by 

       eq 5.17 

where 

         eq 5.18 

is a characteristic property of the diatomic molecule with energy units. The allowed vibrational energies 

are shown in Figure 5.5. The energy levels are equidistant with a spacing of  between neighboring 

levels. 
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Figure 5.5 Allowed vibrational energies of a diatomic molecule in the harmonic approximation. 

The lowest allowed energy is , which is also the zero point energy in the vibrational motion (ZPVE). 

The vibrational energies are nondegenerate; there is only one state function associated with each Ev, i.e. 

gv=1 for all v=0,1,2,… 

Example 5.1 Find the populations of vibrational levels in a sample of gaseous H35Cl molecules at 300 K, 

given that the vibrational frequency is 2990.95 cm-1. 



Chem350-Quantum Chemistry Lecture Notes 5 Fall 2011 

 
 
Solution: We apply the Boltzmann expression, eq 5.17, to the vibrational levels. The populations are 

labeled by the vibrational quantum number v: Nv with  v=0, 1, 2, …; the allowed vibrational energies are 

given by eq 5.17, and gv=1. We have 

 

As discussed above, the vibrational frequency =2990.95 cm-1 can be interpreted as the value of  (eq 

5.18) in wavenumber units for energy provided we also calculate kBT in the same units.5 For T=300 K, we 

had found above that kBT=208.6 cm-1. Hence, / kBT = 2990.95/208.6 = 14.34. Relative population of the 

first excited vibrational level (i.e. v=1) is e-14.34 = 5.93x10-7. This is a very small population, and all the 

higher lying excited levels have much smaller populations. We conclude that in this sample at T=300 K, 

effectively all molecules are in their ground vibrational states (i.e. v=0 for all). 

 

5.3.3 Vibrational wavefunctions and Quantum Mechanical tunneling 

Expressions for the vibrational functions  are conveniently given in terms of the dimensionless 

variable y defined by 

y=x/α           eq 5.19 

where 

α=           eq 5.20 

 has distance unit. The vibrational wavefunctions are 

   (normalization constant)  eq 5.21 

where the functions  are polynomials of degree v in y, known as Hermite polynomials in the 

literature. The variable y ranges from -  to + . For v=0, 1, 2, and 3, explicit expressions of Hermite 

polynomials are 

H0(y)=1           eq 5.22 

H1(y)=2y          eq 5.23 

H2(y)=4y2 – 2          eq 5.24 

H3(y)=8y3 – 12y          eq 5.25 

                                                           
5
 Alternatively, you may calculate εo=hc(2990.95 cm

-1
) in Joules. In this case, you must calculate kBT in Joules, also. 
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Note that  are real-valued functions. Figure 5.6 shows graphs of probability densities  for the 

lowest three vibrational states. 

 

 

Figure 5.6 Probability density vs. y for the vibrational states with v=0, 1, 2. The horizontal axis for  is drawn at Ev 

above the minimum of Vh. The points yv are the classical turning points at the corresponding energy levels (see eq 

5.28 below). 

At a given energy, the classical harmonic oscillator is confined between the two turning points. As shown 

in Figure 5.6, the quantum oscillator has a nonzero probability of being in the classically forbidden 

region. When a particle passes into a region that is classically prohibited, the process is called 

“tunneling”. 

We can calculate the total probability of finding the particle with energy Ev (eq 5.17) in the classically 

forbidden region as follows. The state function associated with energy level Ev is . The probability of 

finding the particle at a distance larger than the turning point yt at this energy is given by 

Pr(y > yt) =          eq 5.26 

Similarly, the probability of finding the particle at points y<- yt is 

Pr(y <- yt) =  = Pr(y > yt)     eq 5.27 

because  is an even function of y (see Figure 5.6). Thus the total probability of finding the particle 

in the classically forbidden region is: Prtot=2 Pr(y > yt). The turning point yt is found by expressing Vh (eq 

5.11) in the dimensionless variable y, and equating it to Ev. From eqs 5.18 and 20 we note that α2k=εo so 

that 

 

Hence 
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or 

 Classical turning points at energies Ev  eq 5.28 

We have calculated the integral in eq 5.26 for the three states shown in Figure 5.6 using a computer.6 

The total probabilities of finding the particle in the classically forbidden region are: Prtot= 0.157, 0.112, 

and 0.095 for the states with v=0, 1, and 2, respectively. Among all allowed states, the particle in the 

ground state has the largest probability (15.7 %) of being found outside the parabolic potential.  

 

5.3.4 Selection rules in vibrational transitions 

The gross selection rule: Only heteronuclear diatomic molecules undergo vibrational transitions in their 

interactions with light. Thus homonuclear diatomic molecules such as H2, N2, etc. have no IR spectra. 

For a heteronuclear diatomic molecule, there is a vibrational selection rule 

v= 1           eq 5.29 

The plus sign is for absorption, and the minus sign is for emission of light by the molecule. 

 

5.4 Vibration-Rotation Spectra of Diatomic Molecules 

Thus far we treated the rotational and vibrational motions of a diatomic molecule as separate entities. 

The actual motion of a molecule in 3D is a simultaneous rotation coupled with vibration. It can be shown 

that these two types of motions are approximately independent so that the Hamiltonian for the more 

general motion of a diatomic molecule about its c.m. can be written as7 

        eq 5.30 

where  is given in eq 4.5 of Lecture Notes 4, and  is the vibrational Hamiltonian in eq 5.15. Since 

the variables in the two terms of eq 5.30 are independent, in the solution of the Schrödinger equation 

for simultaneous rotation and vibration, , the energy is additive and the 

wavefunction is a product: 

                                                           
6
 The integral in eq 5.26 has an analytical result when the lower limit is zero. In other cases, the integral must be 

evaluated by numerical methods. 
7
 The most general motion of a molecule is a simultaneous translational+rotational+vibrational+electronic motions. 

The translational energies and states are those of the “particle in a 3D box”, and play no role in absorption or 
emission of light by the molecule. The electronic states will be discussed later. 
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      eq 5.31 

        eq 5.32 

For all diatomic molecules, experiments have shown that B is much smaller than  (the spacing 

between neighboring vibrational levels).  According to eq 5.31, associated with each vibrational level 

there are infinitely many rotational levels, as graphically depicted in Figure 5.7. 
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Figure 5.7 The allowed vibrational+rotational energy levels of a diatomic molecule (eq 5.31). 

 

In its interaction with light, both the rotational as well as the vibrational state of the molecule may 

change, depending on the energy of the light quantum. If the photon energy is considerably smaller 

than , the initial vibrational state does not change ( v=0), and only rotational transitions occur. This is 

the situation with “pure” rotational transitions, as discussed above. On the other hand, if the photon 

energy is near or above , then a vibrational transition accompanied by a rotational transition becomes 

possible. 

Let us consider the sample of H35Cl molecules at 300 K. As discussed in Example 5.1, all molecules in the 

sample can be considered as being in the vibrational ground state: v=0. The molecules are distributed 

over various rotational levels belonging to the ground vibrational level, with energies given by (eq 5.31 

with v=0) 

E(v=0, J) =       eq 5.33 
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The relative populations of these levels are the same as in Table 5.1. When a molecule absorbs a photon 

and changes its vibrational state, due to the selection rule eq 5.29, only the level with v=1 is available as 

the final vibrational level. The initial rotational state must concurrently change because of the ΔJ=±1 

selection rule. In J J+1 transitions, energy of the molecule after absorption of a photon will be 

 E(v=1, J+1) =      eq 5.34 

so that 

E =   “J J+1 transitions”   eq 5.35 

These vibrational+rotational transitions in which the photon energies are greater than  constitute the 

“R branch” of the IR absorption spectrum. 

It is also possible that molecules initially in rotational states with J>0 can undergo J J – 1 transitions. In 

this case, energy of the final state will be 

E(v=1, J-1) =       eq 5.36 

and hence 

E =    “J J – 1 transitions”   eq 5.37 

In these transitions, energies of the absorbed photons will be smaller than ; they constitute the “P 

branch” of the absorption spectrum. 

Figure 5.8 shows one particular allowed transition in the R branch and another in the P branch, using an 

energy level diagram. 

The full IR absorption spectrum is obtained by combining the P branch (eq 5.37) with the R branch (eq 

5.35). Figure 5.9 shows the absorption spectrum of H35Cl at 300 K obtained in this way, for incident light 

frequencies in the range from 2845 cm-1 to 3157 cm-1. Intensities of the absorption lines are 

proportional to the initial populations of the rotational levels in the ground vibrational state. Thus, 

intensities in the R branch are identical to those in Figure 5.1. Intensities in the P branch can be obtained 

from those in the R branch by noting the initial J value; e.g. intensity of the 3 2 transition in the P 

branch is the same as the 3 4 transition in the R branch because both intensities are proportional to 

the initial population of the J=3 rotational level. Note that there is no absorption at light=εo (in cm-1 unit) 

since this transition corresponds to J=0 which is forbidden (see Figure 5.8). 
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Figure 5.8 Absorptions of two different photons, both of which change the vibrational state of the molecule from 

the v=0 to the v=1 vibrational level. The energy of the photon leading from J=0 to J’=1 is +2B, and that of the 

other one causing the J=1 to J’=0 transition is -2B. The energies of these two photons differ by 4B. 
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Figure 5.9 Predicted infrared absorption spectrum of H

35
Cl at 300 K. For clarity in the graph, the energies 

 are abbreviated as  on the right of ; similarly,  is abbreviated as  on the 

left side of . B=10.397 cm
-1

 and =2990.95 cm
-1

.
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Appendix. Kinetic energy in the vibrational motion of a diatomic molecule 

Let x1 and x2 be the instantaneous coordinates of the two atoms relative to the c.m. In the vibrational 

motion, they are not independent due to the c.m. condition: 

R

c.m.

0 x

m2 m1

x1x2

 

m1x1+m2x2=0          eq A.1 

One has 

x1-x2=R           eq A.2 

Solving for x1 and x2 in terms of R, one finds 

        eq A.3 

where M=m1+m2. The equilibrium positions of the two atoms are obtained by setting R=R0. 

        eq A.4 

Using eqs A.3-4, “displacements” of the two atoms from their equilibrium positions are 

       eq A.5 

where x=R-R0. The velocities of the two atoms (relative to the c.m.) are then 

        eq A.6 

The kinetic energy of the vibrational motion is 

,  (reduced mass)   eq A.7 

For the quantum mechanical Hamiltonian, we need T in terms of the (relative) momentum,  

           eq A.8 

The classical Hamiltonian for the vibrational motion in the harmonic approximation is thus 

          eq A.9 


