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6.1 Coulomb interaction energy among charged particles in an atom or a 

molecule 

The interaction energy between a pair of electric charges Q1 and Q2 separated by a distance  is 

given by the Coulomb law as 

  Coulomb interaction energy in SI units    eq 6.1 

where = 8.854 188x10-12 C2 N-1 m-2 is the permittivity of vacuum. In atoms and molecules, the 

charged particles are electrons and nuclei whose charges are integral multiples of the elementary 

charge (magnitude of charge on an electron), e=1.602 177x10-19 C. For example, the charge of an 

electron is -1e, and the charge on the nucleus of an oxygen atom (Z=8) is +8e. In atomic and 

molecular studies, it is convenient to take e as the unit of charge, and set 

Q = q e           eq 6.2 

The average distance between the electron and the nucleus in the H-atom is a0=52.917 725 pm. We 

express distances between particles in an atom or molecule, taking a0 as the unit of distance (called 

the “bohr” unit), and set 

 = r a0           eq 6.3 

Note that r and q are dimensionless. With these units of charge and distance, we can write eq 6.1 in 

the form 

         eq 6.4  

where  

hartree =  = 4.35975x10-18 J = 27.21139 eV     eq 6.5a 

will be taken as the unit of energy. 

When there are many charged particles, the total Coulomb interaction energy is obtained by adding 

contributions (of the form in eq 6.4) from all distinct pairs of charges. 

Atomic units. The units e, bohr, and hartree belong to a system of units called “atomic units” (a.u.).1 

Atomic units are used in theoretical calculations involving electrons, such as in the Schrödinger 

equation for the motion of electrons in atoms or molecules. Two other units in this system are mass 

of electron, me=9.109 382x10-31 kg, as the unit for mass, and =1.054 572x10-34 J s as the unit for 

angular momentum. In atomic units, eigenvalues of  operator are written in dimensionless form as 

, (i.e. without the ); similarly eigenvalues of operator are , also 

dimensionless. Note here that there is an alternative expression for the hartree that gives the same 

numerical value as in eq 6.5a: 

                                                           
1
 Do not confuse “atomic units” of quantum chemistry with the “atomic mass unit”,u, which is defined as 1/12 

of the mass of 
12

C isotope. 
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hartree =           eq 6.5b 

 

6.1.1 Coulomb interaction energy for an atom in atomic units 

Consider an atom with atomic number Z, and having N electrons. For a neutral atom N=Z. We label 

the electrons by the integers 1,2,…,N. Let rj, be the distance of the jth electron from the nucleus, and 

rij be the distance between the ith and jth electrons. Unit of distance is the bohr, unit of charge is e, 

and unit of energy is the hartree (i.e. atomic units). It is convenient to split the interactions into two 

types: i) electron-nucleus attractions, denoted by Ven, and ii) electron-electron repulsions, Vee. We 

have 

          eq 6.6 

         eq 6.7 

and 

V = Ven + Vee          eq 6.8 

The double sum in eq 6.7 is simply a sum over all different pairs of electrons; there are N(N-1)/2 

electron pairs. 

As an example, let us write the expression in atomic units for the total Coulomb interaction energy in 

a neutral Li atom (Z=3 and N=3). The attractive electron-nucleus interaction energy is 

         eq 6.9 

For the electron-electron repulsions, there are 3 electron pairs: 12, 13, and 23, and  

         eq 6.10 

so that 

+        eq 6.11 

 

6.1.2 Coulomb interaction energy for a molecule in atomic units 

We consider a molecule with M nuclei and N electrons. The electrons are numbered as in atoms. We 

label the nuclei with the lowercase letters a, b, …, with Za denoting the atomic number of the ath 

nucleus, and Rab being the distance between nuclei a and b. The distance between the jth electron 

and ath nucleus is denoted by rja. We split the total interaction energy into 3 types: Ven, Vee, and the 

nucleus-nucleus repulsions, Vnn. One has 
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         eq 6.12 

         eq 6.13 

         eq 6.14 

and 

V = Ven + Vee + Vnn         eq 6.15 

The double sum in eq 6.12 has MxN terms to be added.  The one in eq 6.13 is an equivalent notation 

to that in eq 6.7; i.e. a sum over all distinct electron pairs. Similarly, the double sum in eq 6.14 is a 

sum over all distinct nucleus pairs; there are M(M-1)/2 pairs of nuclei. 

Note that the zero point of the potential energy scale (where V=0) corresponds to a spatial 

configuration of the charges such that all particles are separated from each other by an infinite 

distance. This is also the zero point of the total energy scale (where E=0).2 

 

Exercise 6.1 Write explicit expressions in atomic units for Ven, Vee, Vnn, and V for the H2 molecule. 

 

6.1.3 Kinetic energy operator for an electron in atomic units  

The operator for the kinetic energy in SI units for an electron moving in 3D is 

        eq 6.16 

We denote the Cartesian variables with length units, of the electron, by , and , reserving the 

symbols x, y, and z for dimensionless variables defined by , and . We 

have , (see eq 6.5b), and similarly for the other terms in 

eq 6.16. Thus the expression for the kinetic energy operator of an electron in atomic units is 

  For one electron in a.u.      eq 6.17 

When there are N>1 electrons, the operator for the total kinetic energy of the electrons is obtained 

by attaching integer labels to the expression above, and summing 

 For N>1 electrons in a.u.     eq 6.18 

This expression for the kinetic energy operator for electrons can be combined with the potential 

energy in eq 6.8 or eq 6.15 to write the explicit Hamiltonian operator in atomic units for N electrons 

in an atom or in a molecule, respectively. Note that this Hamiltonian does not include kinetic energy 

terms for the nuclei. It is called the “electronic Hamiltonian” of the atom or molecule under study. 

                                                           
2
 See beginning of Lecture Notes 3. 
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Example 6.1 What is the explicit expression for the electronic Hamiltonian operator in Li atom? 

Answer: There are N=3 electrons in Li atom. The potential energy is given in eq 6.11. The electronic 

Hamiltonian operator is 

  

 

Exercise 6.2 Write the explicit expression in atomic units for the electronic Hamiltonian operator of 

the single electron in the hydrogen molecule ion, H2
+. 

Exercise 6.3 Write the explicit expression in atomic units for the electronic Hamiltonian operator of 2 

electrons in the H2 molecule. 

 

6.2 Allowed energy levels of the electron in H-atom 

The electronic Hamiltonian in atomic units for the electron in H-atom (Z=1) is 

          eq 6.19 

where r is the distance between the electron and the nucleus, in bohrs. The fact that the potential 

energy depends only on r suggests that it should be easier to solve the Schrödinger equation,  

          eq 6.20 

 where E is in hartrees, using spherical polar variables (r, , ). The expression for the Laplacian 

operator in these variables is 

     eq 6.21 

Comparison with eq 4.9 (in Lecture Notes 4) shows that the angle-dependent terms in the second 

parenthesis above is the operator (dimensionless), so that 

        eq 6.22 

Since the expression for  contains only the  and  variables, it commutes with any expression 

involving only r (because the three variables are independent). Hence   commutes with  in eq 

6.19. It follows that  and  have simultaneous eigenfunctions. Since we know that the 

eigenfunctions of  are the spherical harmonics, , the “orbitals”3  must have a product form 

        eq 6.23 

                                                           
3
 See Sec. 3.3 in Lecture Notes 3. 
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Thus the problem of solving eq 6.20 is reduced to that of determining the “radial” functions R(r). In 

order to find them, one substitutes  of eq 6.23 into eq 6.20, and simplifies. You should verify that 

the resultant equation for R(r) is 

       eq 6.24 

The purpose up to this point has been to demonstrate how “commuting operators” simplify solution 

of the Schrödinger equation.4 We will not go into the mathematical details of solving eq 6.24, and 

simply quote the results from the literature. It is found that “well-behaved”5 solutions of eq 6.24 

exist only for the following orbital energies (in hartrees) 

        eq 6.25 

The allowed energies (in eV) for a bound electron in the H-atom are depicted in Figure 6.1. The 

spacing between neighboring levels rapidly decreases as E increases, and approaches zero as n . 

The zero point (where E=0) of the energy scale corresponds to a situation where the electron is 

infinitely far away from the nucleus with zero kinetic energy; i.e. the “ionized” state in chemical 

terminology. According to eq 6.25, the ionization energy (IE) of H-atom in its ground state is 0.5 

hartree=13.61 eV. This value is in excellent agreement with experimental observations. 

 

-13.61

0

E/eV

-3.40

-1.51

n=1

n=2

n=3

Ground state  
Figure 6.1 Allowed energy levels (orbital energies) of the electron in H-atom. 

 

6.2.1 The radial functions R(r) 

Eq 6.24 is an eigenvalue-eigenfunction equation for an operator that depends on the value of the 

angular momentum quantum number l. As seen in eq 6.25, the eigenvalues En are independent of l. 

Because the allowed energies are determined only by the n quantum number, the latter is called the 

“principal” quantum number. The eigenfunctions associated with a given energy level however, do 

depend on l, in addition to the n quantum number, so that they are labeled by both n and l: Rnl. It is 

found that l must be smaller than n; i.e. for a given n, the functions Rnl exist only for l=0, 1,…, n-1. 

                                                           
4
 Eq 6.20 is a partial differential equation with 3 variables whereas eq 6.24 is an equation with only one 

independent variable. 
5
 See Sec. 2.3 in Lecture Notes 2. 
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Since for a given l, there is a different spherical harmonic function  depending on the value of m 

in the range , the orbitals (eq 6.23) are labeled by 3 quantum numbers: n, l, and m 

  Functional form of Atomic Orbitals  eq 6.26 

Atomic orbitals of this form also occur in approximate treatments of electronic states in many-

electron atoms such as He, Li, etc, or their ions. The only difference in the latter is in the explicit 

expression for the radial function R; its form depends on the atom or ion under study, especially on 

its atomic number Z. For the H-atom where Z=1, explicit expressions are given in Table 6.1 for the 

first few radial functions. 

For a given n (which means a given orbital energy En), let us count how many different orbitals are 

available according to eq 6.26. We have l=0,1,…,n-1, and for each l, m=-l,-(l-1),…,0,1,2,…,l. One finds 

that the total number of functions is n
2
. Thus the degeneracy of orbital energy En in the H-atom is 

gn=n
2
. 

 

Table 6.1 Radial functions in the orbitals (eq 6.26) of the electron in H-atom for n=1, 2, and 3. 

n l Rnl N 

1 0 N e
-r
 2 

2 0 N (2-r) e
-r/2

  

 1 N re
-r/2

  

3 0 N (27-18r+2r
2
) e

-r/3
  

 1 N r(6-r) e
-r/3

  

 2 N r
2
 e

-r/3
  

 

The general form of Rnl is: e-r/n x polynomial of degree (n-1) in r. All are real functions. Because of the 

exponential factor, all become zero at r= . The functions with l≠0 are also zero at r=0. Aside from the 

origin and infinity, there are n-l-1 zeroes (called “nodes”) in Rnl(r). These properties are useful in 

preparing graphs of these functions. Figures 6.2-4 show graphs of the radial functions given in Table 

6.1. 

 

 
Figure 6.2 Graphs of R1s (red) and r

2
R1s

2
 (blue) in the 1s orbital. 
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Figure 6.3 Left: Graphs of R2s (red) and R2p (blue). Right: Graphs of r

2
R2s

2
 (red) and r

2
R2p

2
 (blue). 

     
Figure 6.4 Left: Graphs of R3s (red), R3p (blue), and R3d (green). Right: Graphs of r

2
R3s

2
 (red), r

2
R3p

2
 (blue), and 

r
2
R3d

2
 (green). 

The radial functions Rnl and the orbitals in eq 6.26 are labeled by integer subscripts. In an alternative 

notation of widespread usage, the value of l is indicated by a code letter: 

letter s p d f g h i k … 
l 0 1 2 3 4 5 6 7 … 

 

Starting with f, the letters go in alphabetical order except that j is omitted. For example, the radial 

functions R10 and R21 are denoted by R1s and R2p, respectively. Similarly, the orbitals for l=0 are shown 

by  etc., or more simply as 1s, 2s, … For orbitals with l >0, there are several values m, and m 

is attached to the letter code as a subscript; e.g. for the 2p orbitals, or more simply 

as 2p-1, 2p0, and 2p1. 

Normalization of the radial functions. The normalization condition for the orbitals in eq 6.26 is 

(omitting the subscripts for simplicity) 

       eq 6.27 

since R(r) is a real function whereas the spherical harmonics are complex except when m=0. The 

volume element is:  

 where  and   eq 6.28 

The triple integral in eq 6.27 is factorized: I=I1I2 where 

 and     eq 6.29 

The double integral I2 has the value 1 because the spherical harmonics are normalized.6 The orbitals 

will be normalized if I1=1. Therefore, the normalization condition for the radial functions is 

                                                           
6
 See eq 4.19 in Lecture Notes 4. 
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         eq 6.30 

Values of N in Table 6.1 are obtained by this condition. 

The Radial Distribution Function. The probability of finding the electron in a tiny volume   in 3D is 

        eq 6.31 

We now ask: What is the probability of finding the electron at a distance from the nucleus between r 

and r+dr (i.e. in ) with no restrictions on the angle variables  and ? We must add up the 

probabilities in eq 6.31 for “all space” for  and , keeping r and dr fixed. This amounts to integrating 

the expression in eq 6.31 over the angles 

        eq 6.32 

The function , which determines the probability of finding the electron at a distance r from 

the nucleus, is called the radial distribution function, P(r) 

   The radial distribution function    eq 6.33 

Note that the probability of finding the electron in “all space for r” is 1, due to the normalization 

condition eq 6.30. This is of course necessary, because the probability of finding the electron in the 

full 3D space must be 1. 

Figures 6.2-4 include graphs of P(r) for the 1s, 2s, 2p, 3s, 3p, and 3d orbitals. The “most probable 

distance”, rmp, of the electron from the nucleus is the distance at which P(r) has the highest value. 

When there is more than one maximum, Figures 6.2-4 show that it occurs at the outermost 

maximum of P(r). Note that for a given n, rmp decreases with increasing l. For example, a 3d electron 

in the H-atom is most probably nearer to the nucleus than a 3p electron, which in turn is nearer than 

a 3s electron (Figure 6.4, right side). 

The mathematical condition for finding a maximum (or a minimum) of P(r) is 

           eq 6.34 

Using eq 6.33, this equation may be expressed in terms of . After simplifications, one has 

          eq 6.35 

One picks r* among the solutions of this equation that gives the largest value for P(r*) as rmp. 

  

Exercise 6.4 Find the most probable distance of the electron from the nucleus for an electron in a) 3p 

and b) 3d orbital. Compare your results with Figure 6.4. 

Exercise 6.5 Find the average distance of the electron from the nucleus for an electron in a) 3p and b) 

3d orbital. Answer: 25/2, 21/2 (in bohrs). 
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6.2.2 Dependence of Atomic Orbitals on the angular variables 

As pointed out in the “2 df rotor” problem in Lecture Notes 4, the spherical harmonics in eq 6.26 are 

complex functions for m≠0. They have the form (eq 4.17) 

        eq 6.36 

The -dependent factors are real functions. Table 6.2 presents first few of them for l=0, 1, and 2. The 

-dependent factor is 

         eq 6.37a 

normalized such that 

         eq 6.37b 

 

Table 6.2  

l m  

0 0 
 

1 0 
 

 1 
 

2 0 
 

 1 
 

 2 
 

For a given l, there are 2l+1 values of m in the range  l ≤ m ≤ l. For the purposes of this section we 

list the m values in the form: 0, (1,-1), (2,-2),…,(l,-l). The -dependent factor in eq 6.36 is the same 

expression for both m and -m, when m≠0, the only difference being in the -dependent factor, . 

For m=0,   is a real constant, and hence  is a real function for all l=0, 1, 

2, … These real functions with m=0, for l=0, 1, and 2 are commonly designated by the symbols , , 

and , respectively, in chemical applications. For m≠0, the pair of complex functions  and 

 are related to two real functions by 

       eq 6.38a 

       eq 6.38b 
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Here we have 4 functions, but there are also 2 relations connecting them (note that the argument 

 is the same in all 4 functions). Therefore, the number of independent functions is 4-2=2. Any 2 

out of 4 may be chosen as the independent functions. The spherical harmonics of eq 6.36 employ the 

complex exponentials, but we can also take the two real functions  and  as the 

independent functions. These two functions when normalized as in eq 6.37b are 

         eq 6.39a 

         eq 6.39b 

For m>0, in place of the pair of complex functions ( ) we may use the pair of real functions: 

,  and        eq 6.40a 

,  m=1,2,…, l       eq 6.40b

  

Note that for a given l, the total number of real functions is 2l +1: 2l functions in eqs 6.40a,b plus . 

For l=1, the complex spherical harmonics are designated by , and  while the corresponding 

real functions are denoted by , and . Similarly the five l=2 functions are designated by 

the letter d with the m value attached as a subscript in the case of complex functions, and Cartesian 

symbols for the real functions. The real spherical harmonics are given in Table 6.3 for l=0, 1, and 2. 
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Table 6.3 The normalized real spherical harmonics 

l  Symbol  

0 m=0  
 

 
1 

 
m=0 

 
  

  
m=1 

 
  

  
m=1 

 
  

 
2 

 
m=0 

 
  

  
m=1 

 
  

  
m=1 

 
  

  
m=2 

 
  

  
m=2 

 
  

 

 

Real atomic orbitals (AO) are obtained by multiplying the angular functions in eq 6.40a,b with the 

radial function Rnl.
7, 8 The directional properties of AOs in 3D are contained in the angular parts. 

Magnitude of electric “charge density” in units of e (i.e. a.u. of charge) contributed by an electron in 

a normalized orbital  is  for a real orbital. The dependence of the electronic charge density on 

the angles is determined by the squares of the angular parts in the real AOs. Figures 6.5 and 6.6 

depict 2D polar graphs that display how the charge density changes with direction for an electron in 

s, p, and d AOs. 

 

 

                                                           
7
 Note that a radial function with a given l must be combined with angular functions of the same l. 

8
 The real AOs are not eigenfunctions of the  operator except for m=0. This fact does not present any 

problems in physical interpretations since the orbital energies are independent of m. 
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s px py pz  
Figure 6.5 Polar graphs of squares of  and  functions. Signs of the angular functions are indicated by 

shading. 

 

The charge density of an s orbital is the same along all lines originating from the nucleus; i.e. it is 

independent of direction. The charge densities of the p orbitals are concentrated along the Cartesian 

directions x, y, and z. The densities of four of the d orbitals are equally prominent along two 

orthogonal directions while that of is mainly concentrated along the z direction, similar to the pz orbital. 

Note that the number of nodal surfaces of the angular functions is equal to l. These nodal surfaces pass 

through the origin.
9
 Thus the angular part of s orbitals (l =0) has no nodal plane of this type, that of p orbitals 

(l=1) has one, and d orbitals (l =2) have two nodal surfaces. 

 

x

y

x

y

x

z

y

z

y

z

d(x2-y2) dxy dxz dyz d(z2)  
Figure 6.6 Polar graphs of squares of  , and  functions. Signs of the angular functions 

are indicated by shading. 

Exercise 6.6 A polar graph uses plane polar coordinates in plotting a function f( ). The variable  is 

the angle from the positive x-axis, and |f( )| is the distance from the origin to the point on the graph. 

Consider the angular function . On the xy-plane, . Since we are 

interested in directional properties only, the factor N can be dropped and we may simply take 

. a) Sketch the polar graph of . Indicate the signs of  in your graph. b) Sketch the polar 

graph of  and compare it with the one in Figure 6.5. 

 

6.3 Energy levels and radial functions in hydrogenlike atoms 

An atom of atomic number Z with only one electron such as He+, Li2+, etc. is called a hydrogenlike 

atom. The potential energy is V=-Z/r, and the Hamiltonian is 

          eq 6.41 

                                                           
9
 The full orbitals also have another type of nodal surfaces due to the zeroes of Rnl, which do not pass through 

the origin. E.g. the 2s orbital have a spherical nodal surface. 



Chem350-Quantum Chemistry Lecture Notes 6 Fall 2011 

 
 

13 
 

This Hamiltonian is related to that of the hydrogen atom with Z=1 by a simple change of variable. 

Setting r=r’/Z, eq 6.41 may be written as 

         eq 6.42 

where the Laplacian operator with a prime is in terms of r’. It follows immediately that the 

eigenvalues of  are 

        eq 6.43 

The orbitals in the hydrogenlike atom has the same form as in eq 6.26. The radial functions Rnl are 

obtained from the expressions for the H-atom (Table 6.1) by replacing r with Zr, and multiplying the 

functions by the factor Z3/2 (needed for the correct normalization of hydrogenlike orbitals). 

 

Exercise 6.7 Consider a system of two electrons with the Hamiltonian 

 

where  

 

a) What are the allowed energy levels of electron 1? What are those of electron 2? 

b) Does  commute with ? According to the expression for  above, are the two 

electrons interacting with each other? Are they independent electrons or not? 

c) Write a formula that gives the allowed values for the total energies in this system. 

d) What is the energy of the ground state of this system? What is the energy of the first excited 

state of the system? 

e) What is the expression for the wavefunction for the ground state of the system? 


