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7.1 Electronic states of helium atom 

Neutral He atom (Z=2) has 2 electrons. The electronic Hamiltonian in a.u. is (Figure 7.1) 
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Figure 7.1 Interparticle distances in the helium atom. The nucleus is at the origin of a Cartesian coordinate 

system (axes not shown). The nucleus is fixed in space; only the electrons are moving. 

The last term in eq 7.1a is the contribution to the potential energy arising from the repulsion 

between the two electrons; the value of this term depends on the coordinates of both electrons 

whereas the first four terms depend on coordinates of individual electrons only. We rewrite eq 7.1a 

in the form 

 ̂   ̂( )   ̂( )  
 

   
         eq 7.1b 

where 

 ̂( )   
 

 
  

  
 

  
                       eq 7.2 

depends on the coordinates of the jth electron only. The operator  ̂ is recognized as the Hamiltonian 

of an electron in a hydrogenlike atom (with Z=2, in this case; see eqs 6.41-43). The two operators 

 ̂( ) and  ̂( ) trivially commute with each other because they depend on different variables. 

However, neither one commutes with the interaction term 1/r12. Because of this latter fact, the 

Schrödinger equation for the helium is not separable, and we must use approximation methods. 

 

7.2 The Variation Method 

The “variation method” is a powerful procedure that forms the basis of most quantum-mechanical 

calculations made on atoms and molecules. It is based on the “variation principle”. 

Let  ̂ be a time-independent Hamiltonian operator, and E1 be the exact lowest eigenvalue of  ̂ (i.e. 

the exact ground state energy). Given a normalized wavefunction,       , we can calculate an energy 

by the average value expression 

       ∫      
  ̂          normalized           eq 7.3a 

Note that in this expression,  ̂ is the exact Hamiltonian whereas        is an approximate function 

that we design (i.e. we guess it). The variation principle states that        can never be less than the 

true lowest energy: 
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           Variation Principle      eq 7.3b 

The normalized function        is called a “trial variation function”, and the integral in eq 7.3a is 

called the “variational integral”. In order to achieve a good approximation to the ground state 

energy, we try many different trial functions and look for the one that gives the lowest value for the 

variational integral. The approximate functions that we devise for this purpose must have certain 

characteristic properties that are known about the exact solutions of the Schrödinger equation. 

 

7.3 Total Orbital and Spin Angular Momenta in an Atom 

We can obtain very useful information about the features of the exact wavefunctions if there are 

available other operators that commute with the Hamiltonian of the system. This is because when  ̂ 

commutes with another operator  ̂, the two operators have simultaneous eigenfunctions. It is 

generally the case that the eigenvalues and the eigenfunctions of  ̂ can be found much more easily 

than solving the Schrödinger equation,  ̂    . The fact that   must also be an eigenfunction of 

 ̂ means that   can be characterized by the eigenvalues (and eigenfunctions) of  ̂. It is thus 

important to search for operators that commute with  ̂.  We now discuss properties of several 

operators of this type. 

 

7.3.1 The total orbital angular momentum of electrons in an atom 

The total orbital angular momentum of N electrons in an atom is a vector operator defined by 

 ⃗̂   ⃗̂    ⃗̂      ⃗̂           eq 7.4 

where  ⃗̂   is the orbital angular momentum vector operator of the jth electron. The z-component of  ⃗̂  

is 

 ̂   ̂    ̂      ̂          eq 7.5 

As in the case for a single electron, it may be shown that  ̂  commutes with  ̂ , and that both of 

these operators also commute with the Hamiltonian  ̂ of the atom. It follows that the exact 

solutions,  , of the Schrödinger equation are eigenfunctions of  ̂  and  ̂ . It is found that 

eigenvalues of the latter operators are (in a.u.) as in Table 7.1: 

Table 7.1 Eigenvalues of orbital angular momentum operators (a.u.) 

Operator  ̂   ̂  

Eigenvalues L(L+1) where L=0, 1, 2,… ML where –L  ML  L 

 

Thus the exact atomic functions   can be classified according to the L and ML values they possess. It 

turns out that the total electronic energy, E, of a many-electron atom is independent of the ML 

quantum number, but it does depend on L (for N>1). The spatial degeneracy of an atomic energy 
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level characterized by a given L value is 2L+1. For a single electron (N=1), it is conventional to use the 

lowercase symbols l and ml for the orbital momentum quantum numbers, reserving the 

corresponding uppercase symbols for the totals (i.e. for N>1 cases). This notation is also used for the 

spin angular momentum discussed next. 

 

7.3.2 The total spin angular momentum of N electrons 

In Section 3.3, we mentioned that an electron has two “spin states” designated by α and β. In 

theoretical considerations, α and β are postulated to be functions of the “spin variable” of the 

electron. The spin variable is independent of the spatial variables of the electron. Thus an electron 

moving in 3D is considered to have 4 independent variables: 3 position variables to locate it in the 3D 

physical space plus 1 spin variable to specify its spin state. It is further postulated that an electron 

has a spin angular momentum vector operator,  ̂ , that is a function of the spin variable of the 

electron only, such that the spin functions α and β are eigenfunctions of  ̂  and  ̂ : 

 ̂    (   ) 

 ̂      
  where s=1/2;  σ=α or β;  and ms=1/2  for σ=α, and ms=-1/2 for σ=β   

They are assumed to satisfy the orthonormality conditions: 

∫               and ∫             eq 7.6 

where ds is the volume element for the spin variable. 

For N>1 electrons, the total spin angular momentum operators of the electrons are defined similarly 

to those in eqs 7.4-5 

 ̂   ̂    ̂      ̂           eq 7.7a 

 ̂   ̂    ̂      ̂          eq 7.7b 

with the eigenvalues of  ̂  and  ̂  given in Table 7.2. 

Table 7.2 Eigenvalues (in a.u.) of spin angular momentum operators for N electrons. 

Operator  ̂   ̂  

Eigenvalues S(S+1), such that Smax=N/2 MS  where –S  MS  S 

 

The allowed values of the total spin quantum number S depend on whether there is an even or an 

odd number of electrons in the atom (or molecule): 

S=0, 1,…, N/2  if N is even       eq 7.8a 

S=1/2, 3/2,…, N/2 if N is odd       eq 7.8b 
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For a single electron (N=1), eigenvalues in Table 7.2 reduce to those given previously. Note the usage 

of lowercase and uppercase symbols for the quantum numbers, depending on whether we have a 

single electron or many electrons. This is a general convention. 

The Hamiltonian operator of the atom that we are considering, e.g. eq 7.1 for He, is a function of 

only the spatial variables of the electrons whereas  ̂  and  ̂  are functions of the spin variables. 

Therefore, the latter operators trivially commute with  ̂. Hence the state functions   of an atom 

must be eigenfunctions of  ̂  and  ̂ ; and as a result,   can be labeled by the spin quantum numbers 

S and MS, in addition to L and ML. 

Similar to the case with the orbital angular momentum, the total electronic energy of an atom does 

not depend on the MS quantum number, but it does depend on the total spin quantum number S (for 

N>1). There are 2S+1 different values of MS for a given S. Thus the “spin degeneracy” of an atomic 

energy level E is 2S+1 with the total degeneracy being (2L+1)(2S+1). The spin degeneracy, 2S+1, is 

also called the “spin multiplicity” or simply, the multiplicity of the atomic state. 

As an example let us consider the allowed electronic states in the helium atom. Here, N=2 so that 

there are only two values for S: 0 and 1. For S=0, the spin multiplicity is 1 (“singlet”), and for S=1 the 

multiplicity is 3 (“triplet”). Thus the complete set of states can be grouped into two types as 

distinguished by their multiplicities: a group of “singlet states”, and another group consisting of 

“triplet states”. These states are also characterized by an L quantum number associated with each 

one of them. In contrast to S which takes only two values in the He atom, L may take infinitely many 

different values: L=0, 1, 2,… Angular momentum characteristics of a state are shown by combining 

the multiplicity and L in the following form: 

2S+1L  Atomic Term Symbol       eq 7.9 

where a letter code is used for L. The letters employed are the uppercases of those used for the 

orbitals. Thus, in the He atom, the term symbols of the singlet states are 1S, 1P, …, and those of the 

triplets are 3S, 3P,… Note that there are infinitely many states of each of these term types; i.e. many 
1S states with different energies, many 3S states, etc.  

 

Exercise 7.1 List all possibilities of the spin multiplicities for each of the atoms: a) Li, b) Be, c) N.  

 

7.3.3 The Pauli Exclusion Principle 

In Section 3.3 we stated this principle in terms of the maximum occupation number of an orbital 

energy level as nmax=2g where g is the degeneracy of the orbital energy. Since by definition, g is the 

number of different orbitals having the same energy, this form of the Pauli principle means that the 

maximum occupation number of a single orbital is 2. Here we will give a more general definition of 

this principle. 
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Let us consider the two electrons in the He atom. We label the electrons by the integers 1 and 2, and 

write the wavefunction as (1,2) where the arguments stand for all four independent variables (3 

position+1 spin variable) for each electron. The general statement of the Pauli principle is: 

The wavefunction (1,2) must change sign when the labels of the two electrons are exchanged, 

(2,1) =  (1,2)  Pauli exclusion principle    eq 7.10 

For the purpose of gaining a better insight about the meaning of eq 7.10, let us introduce the 

permutation operator  ̂   that exchanges the labels of the two electrons in any function f(1,2) of 

their variables; i.e.  ̂   (   )   (   ). Since applying   ̂   twice in a row to f(1,2) restores the 

function to its original value, we have  ̂  
   , i.e. the identity operator. Finding eigenvalues of  ̂   is 

easy. Assume that f is an eigenfunction of  ̂   with eigenvalue p: 

 ̂       

Applying  ̂   to both sides of this equation, we have 

 ̂  
    ( ̂   )      

Since the squared operator on the left is the identity operator, one has f=p2f, or p=±1. The 

eigenfunctions with p=+1 do not change sign in the exchange of the two electrons; they are said to 

be “symmetric” with respect to the exchange. Those eigenfunctions with p=-1 change sign in the 

interchange, and are said to be “antisymmetric” with respect to the exchange. We see from eq 7.10 

that (1,2) must be an eigenfunction of  ̂   with eigenvalue p=-1; i.e. it must be antisymmetric when 

all four variables of the two electrons are exchanged. 

You should easily see that if you exchange the electron labels in eq 7.1a or b, you will obtain the 

same expression. Because of this property, the Hamiltonian operator of an atom commutes with the 

permutation operator. Note that  ̂   also commutes with the operators  ̂   ̂ ,   ̂  and  ̂ . It follows 

that  ̂ and  ̂   have simultaneous eigenfunctions; i.e. the state functions (1,2) can be labeled by p. 

According to the Pauli principle, only those (1,2) with p=-1 are physically acceptable. 

 

7.4 Designing trial variation functions for the helium atom 

The trial functions that are used in the variational integral (eq 7.3a) must have the properties of exact 

wavefunctions outlined above: a) trial must be antisymmetric with respect to the exchange of the 

variables of the two electrons; b) trial must be a simultaneous eigenfunction of the four operators: 

 ̂   ̂  ,   ̂  and  ̂ . We discuss first the antisymmetry requirement. 

The exact wavefunction for a two-electron system such as the He atom can be written as the product 

of a space-dependent part and a spin-dependent part: 

(1,2) =space(1,2) spin(1,2)        eq 7.11 

where space(1,2) is a function of only the spatial variables of the two electrons, and spin(1,2) is a 

function of only the spin variables. For the total wavefunction (1,2) to obey the Pauli principle, one 
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of the factors in eq 7.11 must be symmetric while the other one antisymmetric with respect to 

electron exchange. There are two cases to consider as shown in Table 7.3 

Table 7.3 

 space(1,2) spin(1,2) 

a) +1 –1 
b) –1 +1 

where +1 and -1 are the two eigenvalues of  ̂  . 

 

7.4.1 Two-electron spin functions 

Since the Hamiltonian operator (eq 7.1a) is independent of the spin variables, spin(1,2) is determined 

entirely by the requirements that it must be a simultaneous eigenfunction of the three commuting operators 

 ̂ ,  ̂  , and  ̂  . Each electron has two spin functions of its own spin variable: α(1), β(1) for electron 

1, and α(2), β(2) for electron 2. The one-electron spin functions are eigenfunctions of  ̂  (for one 

electron) with s=1/2 (i.e. the eigenvalue is s(s+1)=3/4). α and β are also eigenfunctions of  ̂  with 

eigenvalues ms=1/2 and -1/2, respectively. By taking a spin function for each electron we can form 

22=4 products as shown in the first row of Table 7.4. The second and third rows of the table give the 

eigenvalues of  ̂  and  ̂  when the product spin function is an eigenfunction of the corresponding 

operator; a “no” entry means that the particular product function is not an eigenfunction of  ̂  . 

Table 7.4 

 α(1)α(2) α(1)β(2) β(1)α(2) β(1)β(2) 

 ̂  1 0 0 -1 

 ̂   +1 no no +1 

 

All of the product spin functions are eigenfunctions of  ̂  as can be easily shown. For two electrons, 

we have  ̂   ̂    ̂   (eq 7.7b with N=2). The spin variable of electron 1 is independent of that of 

electron 2. Let σ1 be either α or β spin function for electron 1 (with ms=1/2 or -1/2, respectively). Similarly, 

σ2 denotes the spin function of electron 2. The product of the two spin functions is σ1σ2. We have 

 ̂      ( ̂    ̂  )        ̂        ̂        ( )    ( )       eq 7.12 

Therefore, MS=ms(1)+ms(2) for the two-electron case. In general, for N electrons there are 2N 

products of spin functions of the form        , and 

   ∑   ( )
 
            eq 7.13 

Returning to Table 7.4, we know that for two electrons, the total spin quantum number S can only be 

either 0 or 1. We also know that S  MS. Since the largest value of MS in the table is 1 for the function 

αα (suppressing the electron labels), we conclude that the latter two-electron spin function is an eigenfunction 

of  ̂  with S=1 (i.e. the eigenvalue is S(S+1)=2). When there is an eigenfunction with S=1, we must 

search for all functions with -1  MS 1. Since the function ββ has MS =-1, it must also belong to S=1. Note 

that these two functions are symmetric in spin exchange (i.e. eigenfunctions of  ̂   with p=+1). Now, there 
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are two functions, αβ and βα, with MS =0 in the table. However, they are not eigenfunctions of  ̂   as 

required by spin(1,2) of Table 7.3.  When there are two or more independent functions at some stage 

of a problem, the actual expression for the “true” function is obtained by using extra information 

known about it. In this case, we know that they have to be eigenfunctions of  ̂   with an eigenvalue 

+1 or -1. To find them, we form the linear combination of αβ and βα 

 = c1 (1)(2) + c2 (1)(2) 

where the coefficients c1 and c2 are to be (partially) determined by requiring that  ̂   = p  with 

p=±1. You should verify that for p=1, c2=c1, whereas for p=-1, c2=-c1. We thus have two spin functions 

with correct symmetry under the permutation operator 

a = c1 ( +) 

b = c1 (  ) 

where the electron labels have been suppressed to simplify writing. The value of c1 is found by 

normalizing the spin functions. The volume element for two spin variables is ds= ds(1)ds(2); the 

integrals are factorized; using properties of spin functions in eq 7.6, one finds that c1=  √ . Final 

results for the two-electron spin functions are collected in Table 7.5. 

Table 7.5 Normalized spin functions for two electrons 
(with electron labels suppressed). 

S Spin function MS p 

1  1 +1 

 2
-1/2 

( +) 0 +1 

  -1 +1 

0 2
-1/2 

(  ) 0 -1 

 

The three functions with S=1 are called the triplet spin functions. They are symmetric with respect to 

spin exchange. The function  with the highest MS=1 value is often referred to as the “high spin” 

function, and represented by two parallel up arrows in energy level diagrams. The last function in the 

table with S=0 is called a singlet spin function, and represented by one up arrow parallel to a down 

arrow. It is antisymmetric with respect to spin exchange. 

 

7.4.2 Two-electron functions of spatial variables 

The major problem in solving the electronic Schrödinger equation for the helium atom is the 

determination of the space part, space(1,2), of the wavefunction.  According to case (a) of Table 7.3, a 

singlet spin function must be multiplied by a spatial function that is symmetric in the exchange of 

position variables of the two electrons. 

1
space(1,2) = 1space(2,1)   for S=0 (singlets)   eq 7.14 
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where the left superscript indicates the multiplicity of the overall function.  On the other hand, a 

triplet spin function must be combined with an antisymmetric spatial function (case (b) in table 7.3). 

3
space(1,2) = – 3space(2,1)  for S=1 (triplets)    eq 7.15 

All three triplet spin functions in Table 7.5 are multiplied by the same space function. Since the 

energy is eventually determined by the space part, one immediately sees that E is independent of the 

MS quantum number, as stated before. 

To proceed further we need to write down explicit expressions for the spatial functions. The usual 

starting point for this purpose is the “orbital approximation”. If we omit the electron-electron 

repulsion term from the Hamiltonian in eq 7.1b, we obtain a separable Hamiltonian 

 ̂      ̂( )   ̂( )         eq 7.16 

where the one-electron Hamiltonian is defined in eq 7.2. The Hamiltonian of eq 7.16 is called the 

“core” Hamiltonian. It describes the motion of two independent (i.e. noninteracting) electrons in the 

field of a He nucleus (Z=2). The one-electron Hamiltonian  ̂ is that of a hydrogenlike atom with Z=2 

that we considered in Section 6.3. From eq 6.43, the orbital energies are (in hartree) 

    
 

                          eq 7.17 

The corresponding orbitals are 1s, 2s, 2p1, 2p0, 2p-1, etc. For the purposes here, it is convenient to 

employ the complex orbitals because they have well-defined ml values. Both electrons of eq 7.16 

have the same set of energy levels and orbital functions. The only difference in the explicit 

expressions of the orbitals is the labels of the electrons. For example, 1s(1) and 1s(2) are the 1s 

orbitals of electron 1 and 2, respectively. Remember that the electron labels denote three spatial 

variables for each electron. 

The eigenvalues of the core Hamiltonian are the sum of orbital energies, and the eigenfunctions are 

products of orbitals 

         
    

         eq 7.18a 

     (   )          
        

       eq 7.18b 

Note that the orbital products above are eigenfunctions of  ̂   ̂    ̂   with eigenvalues ML= 

ml(1)+ml(2). In general, for an orbital product containing N factors, one has 

   ∑   ( )
 
            eq 7.19 

This is one of the required properties of approximate functions since we know that the exact 

solutions have the same property, as discussed in Section 7.3.1 above. The spatial parts of the trial 

functions to be used in the variational integral (eq 7.3a) must also be eigenfunctions of  ̂ , and  

additionally, they must obey eq 7.14 for the singlet states, and eq 7.15 for the triplet states. We will 

illustrate how this is done by considering the ground state of the He atom, and several of its excited 

states. Let us first simplify the variational integral a little bit.  
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       ∫      
  ̂         ∫      

      
  ̂                                     

The variational integral is factorized because the Hamiltonian does not contain spin variables. The 

integral over the spin variables is equal to 1 since the spin functions are normalized (Table 7.5). 

Therefore, the approximate energy is given by the integral over the spatial variables1 

       ∫      
  ̂                    eq 7.20 

In the following we will drop the subscripts “trial” and “space”, with the understanding that we will 

be talking about approximate energies and approximate spatial functions. Note that the Hamiltonian 

in eq 7.20 is the exact (nonrelativistic) Hamiltonian (eq 7.1a or b), including the electron-electron 

interaction term, 1/r12. 

 

7.4.3 Ground state of He atom. 

We use the lowest energy orbitals for the two electrons in eq 7.18b; i.e. the 1s orbital for both 

electrons. The space part of the trial function is then 

1
space = 1s(1)1s(2)         eq 7.21 

This function has ML=0, and L=0. It is symmetric to exchange of the spatial variables of the two 

electrons. Thus, it can be combined only with a singlet spin function (see eq 7.14). Therefore, its term 

symbol is 1S. There are many other functions belonging to this term symbol, e.g. 2s(1)2s(2). 

Calculations show that the function in eq 7.21 gives the lowest value for the energy, obtained by 

evaluating the integral in eq 7.20. The ground state of He atom is denoted by 11S, where the “1” in 

front indicates that it is the “first” singlet S state (in order of increasing energy of 1S states). The 

particular selection of the orbitals in eq 7.21 is designated by the symbol: 1s2; it is called the 

“electron configuration” for the ground electronic state of the helium atom. 

 

Exercise 7.2 The true electronic ground state energy of He atom is -79.01 eV. In an approximate 

calculation of this quantity, we try the following function for the 1s orbital in eq 7.21 

    
    

√ 
      so that     ( )  ( )  

  

 
           

where   (“zeta”) is taken as a variational parameter. When this function is used in the integral of eq 

7.20, one obtains (in hartree) 

          
  

 
   

Find the best choice for the value of  , and use it to calculate the best energy for Etrial in eV. What is 

the percent error in the calculated energy? 

Ans.      =27/16; error by 1.9 %. 

                                                           
1
 This simplification is valid only for a two-electron atom or a molecule. 
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7.4.4 Excited electronic states of He atom. 

Let us consider the electron configuration 1s2s. It means that we have decided to take the 1s orbital 

for one of the electrons and the 2s orbital for the other, in eq 7.18b. We may write the product 

function as either 1s(1)2s(2) or 2s(1)1s(2), since we can not distinguish between the two electrons. 

Both have ML=0, and L=0; however, they do not obey eq 7.14 or 7.15, required by the Pauli exclusion 

principle. Hence, we form linear combinations of these two functions to obtain two new functions 

with desired symmetry properties, as we did for the spin functions above. Suppressing the electron 

labels, we have 

1
space = c ( 1s2s + 2s1s)  for singlet (S=0) spin state    eq 7.22 

3
space = c ( 1s2s - 2s1s)  for triplet (S=1) spin state    eq 7.23 

where c=2-1/2 is a normalization constant. The term symbols of these states are 1S and 3S. When the 

integral in eq 7.20 is evaluated with the functions above, both give higher energies than that of the 

function in eq 7.21. They form part of the low-lying excited states of He atom. 

In general, if u and v are different orbitals, the symmetric linear combination 

u(1)v(2) + v(1)u(2)  uv + vu  for S=0      eq 7.24 

satisfies eq 7.14 for singlet states while the antisymmetric combination 

u(1)v(2) – v(1)u(2)  uv – vu  for S=1      eq 7.25 

fulfills requirement 7.15 for triplet states. For simplicity in writing we have omitted the normalization 

constant c. 

Closed and open subshells. The group of orbitals for a given n and a given l is called a “subshell”; 

there are gl =2l+1 orbitals in the group. According to the simpler statement of Pauli principle, the 

maximum occupation number of a single orbital is 2, and hence the maximum occupation number of 

a subshell is 2gl. If a subshell in an electron configuration has the maximum occupancy, the subshell 

is said to be “closed”; otherwise, it is an “open” subshell. Thus, in 1s2 configuration, the 1s subshell is 

closed, and in 1s2s, there are two open subshells. We have seen above (eq 7.21) that the orbitals in 

the former subshell can give only a singlet space function. Other multiplicities are possible only when 

there are open subshells in the electron configuration, as in 1s2s which gives both a singlet and a 

triplet space function (eqs 7.22-23). 

There are simple rules for determining the possible values of the total L quantum number from the l 

values of subshells in an electron configuration. For closed subshells, L=0 (and also S=0). The next 

rule pertains to 2 electrons in open subshells, as in He. Let l1 and l2 be orbital angular momentum 

quantum numbers of the two subshells (which may be same, i.e. l1= l2). Possible values of total L are 

integers given by 

L= Lmax, …, Lmin  where Lmax = l1+l2    and    Lmin =|l1  l2|    eq 7.26 
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It is instructive to consider several examples.  

a) The configuration 1s2p gives a single value for L because l1=0, and hence L= l2=1. Using the orbitals 

belonging to these subshells, 3 singlet space functions of the form in eq 7.24, and 3 triplet space 

functions (eq 7.25) can be constructed. The term symbols are 1P and 3P.The 1P term has a spatial 

degeneracy, (2L+1), of 3; the 3P term, on the other hand, has an additional three-fold spin 

degeneracy, so the total degeneracy of this term is 3x3=9. The total number of states of both spins is 

3+9=12. 

b) Consider the configuration 2p3p. Here, l1=1 and l2=1. From eq 7.26 we have: L=2, 1 and 0, 

designated by D, P, and S, respectively. The spatial degeneracies are 5, 3, and 1, in the same order. 

The two subshells are different because of their n values. As in this and the previous example; when 

the two subshells are different, both spin values (S=0 and S=1) are allowed for each value of L. Thus 

the terms are: 1S, 1P, 1D for the singlet states, and 3S, 3P, 3D for the triplets. They form an additional 

set of excited states of He atom with 6 distinct energies. The total degeneracies are 1, 3, and 5 for 

the singlet energies, and 3, 3x3=9, 3x5=15 for the triplets. The total number of atomic states 

associated with the 2p3p configuration is thus 36. 

c) Next we examine the states from the 2p2 configuration, which may be written as 2p2p. The latter 

notation indicates that the two subshells are the same in this case. The possible values of L are as in 

the previous example: 2, 1, and 0. In the 2p3p case, the orbitals u and v of eqs 7.24-25 are selected 

from different subshells: u from the set (2p1, 2p0, 2p-1) and v from (3p1, 3p0, 3p-1). Hence we can form 

3x3=9 different singlet functions (eq 7.24) and 9 triplet functions (eq 7.25), leading to the remarks 

made in example (b). However here, both of u and v must be selected from the same set: (2p1, 2p0, 

2p-1). Two-electron functions that can be constructed for the singlet and triplet states are shown in 

Table 7.6. There is only one triplet term: 3P. The D term is a singlet; there must be 5 functions for L=2 

corresponding to the values of –2  ML  2. For ML = 1 and 2, there is only one function for each 

value of ML. They belong to 1D term. For ML = 0, however, there are two functions. The presence of 

an extra function with ML = 0 tells us that there must be an additional term with L=0, i.e. 1S. In 

conclusion, the allowed terms for the 2p2 electron configuration are 1D, 3P, and 1S, with three 

different energies. The total number of states of both spins is 15.2 

                                                           
2
 All functions in Table 7.6 except for the two singlets with ML=0 are eigenfunctions of  ̂  operator with 

eigenvalues L(L+1). By forming linear combinations of the latter two functions, two new functions can be 
obtained such that one of them has L=2 and the other has L=0. 



Chem350-Quantum Chemistry Lecture Notes 7 Fall 2011 
 

12 

 

Table 7.6 Two-electron spatial functions for a np
2
 configuration (n is omitted for 

simplicity in writing) 

S Two-electron space functions ML Term Symbol 

1 p1p0  p0p1 1 
3
P 

 p1p-1  p-1p1 0  

 p-1p0  p0p-1 -1  

    

0 p1p1 2 
1
D 

 p1p0 + p0p1 1  

 p0p0   and   p1p-1 + p-1p1 0 
1
S 

 p-1p0 + p0p-1 -1  

 p-1p-1 -2  

 

Exercise 7.3 Use similar arguments as in the np2 configuration to show that for a nd2 configuration, 

the allowed term symbols are: 1G, 1D, 1S for the singlets and 3F, 3P for the triplets. It is easier if you 

consider the triplets and singlets separately, as in Table 7.6. 

 

7.5 The term with the lowest energy: Hund’s Rule 

Relative energies of terms belonging to a given electron configuration must be determined by actual 

calculations of the integral in eq 7.3a (or eq 7.20 for a two-electron atom). Results of a large number 

of such numerical calculations on atoms are summarized by Hund’s rule: 

Among the terms of a given electron configuration, the term with the highest spin multiplicity (i.e. 

maximum S) is lowest in energy. In case such a term is not unique, choose the one with the highest L 

among the terms with the same Smax. 

Let us apply this rule to the various electron configurations of He atom discussed above. For the 1s2s 

configuration, 3S term has a lower energy than the 1S term. For 1s2p, 3P is lower in energy than 1P. 

For 2p3p, among the six terms, 3D should be lowest, and among the three terms of the 2p2 

configuration, 3P is lowest. 

 

7.6 Atomic term symbols for N>2 electrons 

For electron configurations with only 2 electrons in open subshells, the allowed terms are found as in 

the He atom discussed above, since the closed subshells do not contribute to either L or S. For 

configurations containing 3 or more electrons in open subshells, determination of the allowed terms 

is more complicated, and will not be discussed in this course. There is, however, a simple rule if there 

is only one open subshell in the electron configuration considered. Let l be the orbital angular 

momentum quantum number of such a subshell. Its maximum occupation number is, nmax=2(2l+1). If 
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n electrons are assigned to this subshell, the set of terms arising from the subshell configuration ln 

are the same as those from lnmax-n. E.g, the term symbols of p4 are the same as those of p2; a d9 

subshell gives the same term symbol as the one for d1, i.e. a single 2D term (a “doublet”); etc. Note 

that the term with the lowest energy can always be guessed by Hund’s rule for any permissible value 

of n for the occupancy of the subshell. 

 

Example 7.1: What is the term symbol for the ground state of neutral Fe (Z=26) atom? 

Solution: The electron configuration for N=26 electrons in the iron atom is: (closed subshells)3d6. The 

3d subshell here is an open subshell because its nmax =10. Hund’s rule is: distribute the 6 electrons 

into as many different orbitals of the d subshell as possible to achieve a maximum value for MS. 

There are 5 orbitals in the d subshell. We begin by assigning the first 5 valence electrons with parallel 

spins (i.e. each with ms=+1/2) to these orbitals, so that the resultant MS is 5(1/2)=5/2, and ML due to 

them is 2+1+0-1-2=0. The 6th electron must be assigned to the d2 orbital to make the total ML largest; 

hence ML becomes 2. However, the spin of the added electron must be reversed (ms=-1/2) because 

of the Pauli principle, so that MS=5/2-1/2=2. 

d2 d1 d0 d-1 d-2

MS = 2, ML = 2

 

There can be only one function of space and spin variables, with highest values for both MS and ML. It 

follows that S=2 and L=2. Hence, the term symbol with the lowest energy is 5D (a “quintet”).3 

 

Exercise 7.4 Find the ground state term symbols for the following atoms: a) oxygen, b) nitrogen, c) 

bromine, d) argon, e) nickel.  

                                                           
3
 You will arrive at the same result by taking a d

4
 configuration. 
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7.7 The total angular momentum J and atomic energy levels 

Energies of the “terms” are those of the solutions of the atomic Hamiltonian where the potential 

energy V takes into account only the Coulomb interactions. When these energies are compared with 

experimental ones, some qualitatively significant differences are found. As an example of 

experimental data, Figure 7.2 shows the first four energy levels of the carbon atom. Spectroscopic 

measurements can be extremely precise as you see from the data in the figure.4 The first two excited 

levels are separated from the ground state by only 16.40 and 43.40 cm-1, respectively. On the other 

hand, separation of the third excited level (denoted by 1D2), when compared with these values, is 

very high. 

 

1D

3P

1D2

16.40 cm-1

27.00 cm-1

10192.63 cm
-1

3P2

3P1
3P0

Terms Levels

Ground state  

Figure 7.2 The first four experimentally observed energy levels of the carbon atom. The lowest two terms are 

shown on the left. 

 

What does the theory say about the energy levels of the carbon atom (Z=6)? Its low-energy terms 

arise from the configuration 1s22s22p2. There is only one open shell, namely 2p, and the allowed 

terms are 3P, 1D, and 1S.5 We know from Hund’s rule that 3P has the lowest energy. Numerical 

calculations show that the next term is 1D with a separation from 3P, near 10000 cm-1. On the other 

hand; experimentally, carbon atom has several closely spaced levels with energies near to that of the 
3P term. Similar small discrepancies between theoretical energies and experimental data have been 

observed for many other atoms. 

It has been found that this splitting of a term energy into several levels can be explained by 

supplementing the atomic Hamiltonian we have been using thus far by a new contribution called the 

spin-orbit Hamiltonian: 

 ̂      ⃗̂   ̂           eq 7.27 

where A is a constant that depends on the particular term (i.e. on L and S) under consideration. 

Inclusion of this operator modifies the energy of the term by a correction, ESO, called the spin-orbit 

interaction energy. In order to find a working expression for ESO, one introduces the total angular 

momentum operator of the atom. It is a vector sum of spin and orbital angular momenta: 

                                                           
4
 As an energy unit, 1cm

-1
=0.0001240 eV = 0.01196 kJ/mol. 

5
 See example (c) in Section 7.4.4. 
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 ̂   ⃗̂   ̂           eq 7.28 

It can be shown that  ̂  and  ̂  commute with the full Hamiltonian operator of the atom. The former 

two operators also commute with  ̂  and  ̂ . It follows that a solution  of the atomic Schrödinger 

equation including the spin-orbit interaction is simultaneously an eigenfunction of these four 

operators. Eigenvalues of the total angular momentum are given in Table 7.7. Each wavefunction is 

labeled by four quantum numbers: JMJLS. 

 

Table 7.7 Eigenvalues (in a.u.) of the total angular momentum operators. 

Operator  ̂   ̂  

Eigenvalues J(J+1) MJ  where –J  MJ  J 

 

 

The allowed values of J for given L and S (i.e. for a term) are (cf. eq 7.26) 

J= Jmax, …, Jmin  where Jmax = L+S    and    Jmin =|L  S|    eq 7.29 

As an example, for the 3P term, L=1 and S=1. Hence there are three possibilities for J in this term: J=2, 

1, 0. For the 1D term, on the other hand, there is just one possibility: J=2. 

The spin-orbit correction to the energy of an atomic term is given by 

ESO = (A/2) [ J(J+1)  L(L+1)  S(S+1) ]       eq 7.30 

It is seen that energy levels belonging to the term depend on J, but not on MJ. Thus each level is 

(2J+1)-fold degenerate. Levels are designated by adding J as a right subscript on the term symbol. 

Thus the first three energy levels of the carbon atom have the “level symbols” shown in Figure 7.2. 

The spin-orbit interaction (or “coupling”) splits the 9-fold degeneracy of the 3P term into 3 levels with 

degeneracies of 1, 3, and 5, corresponding to J=0, 1, and 2, respectively. 

There is a useful rule for determining the order of the levels within a given term. If the open subshell 

is less than half filled, the level with the smallest J is the lowest; if it is more than half filled, the level 

with the highest J lies lowest. This rule is valid only if the electron configuration has one open 

subshell. 

In the carbon atom, the 2p subshell is less than half filled, and hence the level with J=0 is lowest. The 

ground level of carbon atom is 3P0; it is nondegenerate. According to eq 7.30, the first excited level 

(J=1) is separated from the ground level by A. One can obtain an estimate of this constant by 

reference to the experimental data given in Figure 7.2: A=16.4 cm-1 for the 3P term of the carbon 

atom. 
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7.8 Selection rules for transitions between atomic energy levels in absorption 

or emission of light. 

1. S=0; i.e. spin multiplicity does not change in the transition. 

2. The initial and the final levels must belong to different electron configurations such that 

there must be a change l = 1  in the subshell of only one electron between the two 

configurations. 

3. L=0, 1 

4. J=0, 1, except that J=0 to J=0 transition is forbidden. 

As an example, let us consider absorption of light by ground state, 3P0, carbon atoms. Transitions 

from this level to J=1 or J =2 levels of the same term, or to the 1D2 and 1S0 levels of the same electron 

configuration are forbidden because of rule 2 above. Transitions to triplet states (rule 1) belonging to 

another electron configuration such as 1s22s2p3, (here, l = 1), are allowed within the restrictions of 

rules 3 and 4. 

 

Exercise 7.5 The electronic configuration 1s22s2p3 gives rise to 6 terms: 1D, 3D, 1P, 3P, 3S, and 5S. 

a) For each of the 6 terms, give the level symbols associated with the term. What is the total 

number of distinct energy levels? Which of these levels is expected to have the lowest 

energy?  Ans. 10 levels; lowest is 5S2. 

b) Find the allowed transitions between each of the levels 3P0,
 3P1, and 3P2 of ground 

configuration 1s22s22p2 and the levels of part (a). 


