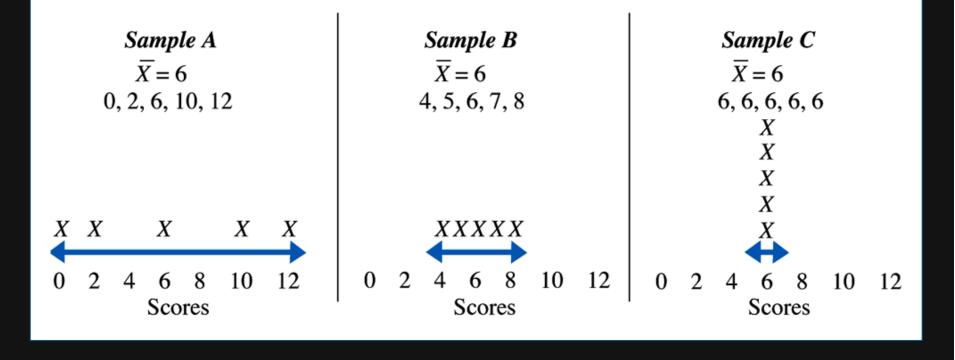
VARIABILITY: Range Variance Standard Deviation



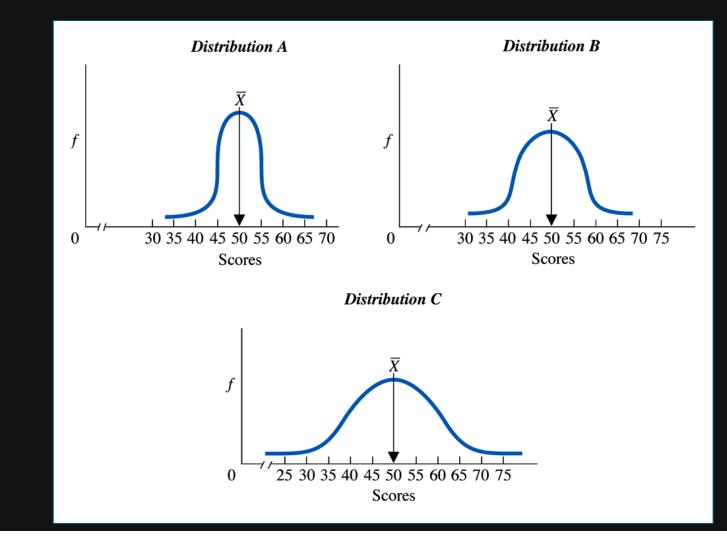
### Measures of Variability

Describe the extent to which scores in a distribution *differ* from each other.

### Distance Between the Locations of Scores in Three Distributions



# Three Variations of the Normal Curve



The Range, Variance, and Standard Deviation

## The Range

• The **range** indicates the distance between the two most extreme scores in a distribution

Range = highest score - lowest score

#### Variance and Standard Deviation

- The *variance* and *standard deviation* are two measures of variability that indicate how much the scores are spread out around the mean
- We use the mean as our reference point since it is at the center of the distribution

The Sample Variance and the Sample Standard Deviation

## Sample Variance

- The *sample variance* is the average of the squared deviations of scores around the sample mean
- Definitional formula

$$S_X^2 = \frac{\Sigma(X - \overline{X})^2}{N}$$

# Sample Variance

• Computational formula

$$S_X^2 = \frac{\Sigma X^2 - \frac{(\Sigma X)^2}{N}}{N}$$

### Sample Standard Deviation

- The *sample standard deviation* is the square root of the sample variance
- Definitional formula

$$S_X = \sqrt{\frac{\Sigma (X - \overline{X})^2}{N}}$$

## Sample Standard Deviation

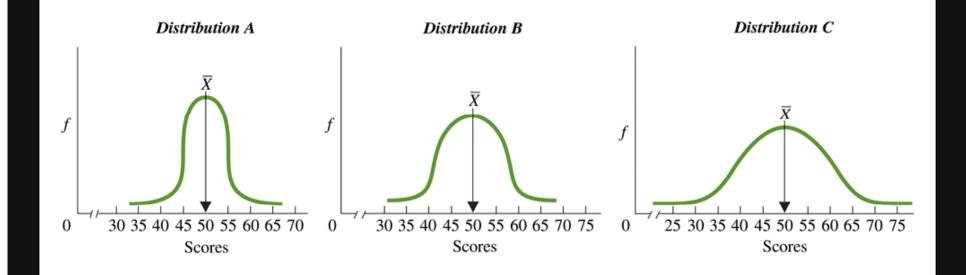
• Computational formula

$$S_{X} = \sqrt{\frac{\Sigma X^{2} - \frac{(\Sigma X)^{2}}{N}}{N}}$$

#### The Standard Deviation

• The *standard deviation* indicates the "average deviation" from the mean, the consistency in the scores, and how far scores are spread out around the mean

## Normal Distribution and the Standard Deviation



Normal Distribution and the Standard Deviation

Approximately 34% of the scores in a perfect normal distribution are between the mean and the score that is one standard deviation from the mean.

### Standard Deviation and Range

For any roughly normal distribution, the standard deviation should equal about one-sixth of the range.

The Population Variance and the Population Standard Deviation

### Population Variance

• The *population variance* is the true or actual variance of the population of scores.

$$\sigma_X^2 = \frac{\Sigma(X-\mu)^2}{N}$$

### Population Standard Deviation

• The *population standard deviation* is the true or actual standard deviation of the population of scores.

$$\sigma_X = \sqrt{\frac{\Sigma(X-\mu)^2}{N}}$$

# The Estimated Population Variance and The Estimated Population Standard Deviation

Estimating the Population Variance and Standard Deviation

- The sample variance  $(S_X^2)$  is a biased estimator of the population variance.
- The sample standard deviation  $(S_X)$  is a **biased estimator** of the population standard deviation.

### Estimated Population Variance

- By dividing the numerator of the sample variance by N 1, we have an unbiased estimator of the population variance.
- Definitional formula

$$s_X^2 = \frac{\Sigma (X - \overline{X})^2}{N - 1}$$

## Estimated Population Variance

Computational formula

$$s_X^2 = \frac{\Sigma X^2 - \frac{(\Sigma X)^2}{N}}{N-1}$$

## Estimated Population Standard Deviation

- By dividing the numerator of the sample standard deviation by *N* 1, we have an unbiased estimator of the population standard deviation.
- Definitional formula

$$s_X = \sqrt{\frac{\Sigma(X - \overline{X})^2}{N - 1}}$$

Estimated Population Standard Deviation

Computational formula

$$s_X = \sqrt{\frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N-1}}$$

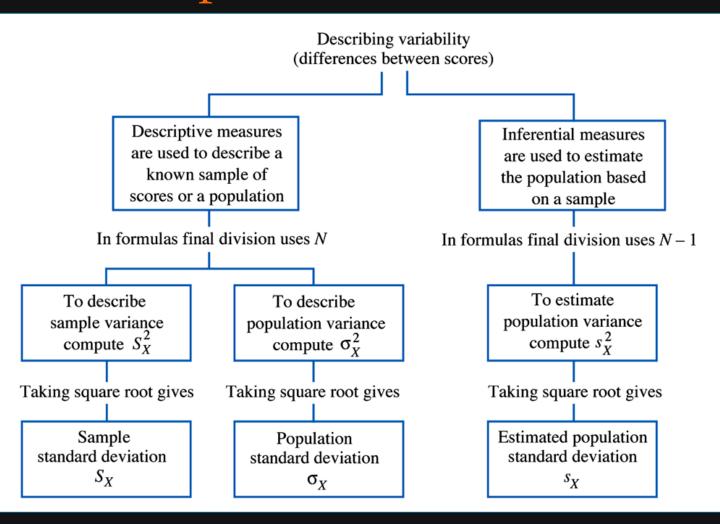
### Unbiased Estimators

- $s_x^2$  is an unbiased estimator of  $\sigma^2$
- $s_x$  is an unbiased estimator of  $\sigma$
- The quantity N 1 is called the degrees of freedom

# Uses of $S_X^2$ , $S_X$ , $s_X^2$ , and $s_X$

- Use the sample variance  $S_X^2$  and the sample standard deviation  $S_X$  to describe the variability of a sample.
- Use the estimated population variance S<sup>2</sup><sub>X</sub> and the estimated population S<sub>X</sub> standard deviation for inferential purposes when you need to estimate the variability in the population.

## Organizational Chart of Descriptive and Inferential



## Proportion of Variance Accounted For

The *proportion of variance accounted for* is the proportion of error in our predictions when we use the overall mean to predict scores that is eliminated when we use the relationship with another variable to predict scores

- Using the following data set, find
  - The range,
  - The sample variance and standard deviation,
  - The estimated population variance and standard deviation

| 14 | 14 | 13 | 15 | 11 | 15 |
|----|----|----|----|----|----|
| 13 | 10 | 12 | 13 | 14 | 13 |
| 14 | 15 | 17 | 14 | 14 | 15 |

• For the following sample data, compute the range, variance and standard deviation

8 8 10 7 9 6 11 9 10 7

11 11 7 9 11 10 11 8 10 7

- For the data set below, calculate the mean, deviation, sum of squares, variance and standard deviation by creating a table.
- 15 12 13 15 16 17 13 16 11 18

- For the data set below, calculate the mean, deviation, sum of squares, variance and standard deviation by creating a table.
- 1322243341

- For the data set below, calculate the mean, deviation, sum of squares, variance and standard deviation by creating a table.
- 1 3 30 12 15 20 5 13 2 4

