SHORT-TERM MEMORY and/or WORKING MEMORY

Atkinson-Shiffrin Model

STM vs. WM

STM:

- Emphasis on *input*
- Older term
 - remembering phone numbers

WM:

- Emphasis on *process*
- Newer term
 - doing math in your
 head

Classic Research on STM

- Capacity
 Digit span
- Duration
 - Brown-Peterson Paradigm
- Retrieval and Forgetting
 - Serial Position

Capacity of STM

Magical number 7 (plus or minus2)

- Digit Span (Jacobs, 1887):
 - Presentation of a succession of digits, and subjects has to report them back.
 - Stops when you make an error, and that is your Digit
 Span

It helps: - when you recite the numbers <u>rhythmically</u>

It helps: – when you *chunk* the material into groups

Brown-Peterson Task

 Determine how long non-rehearsed information stays in STM

Brown-Peterson Task

- Stimuli given
 -A,B,C 428
- Count backwards in 3s
- Recall the letters

Results - Brown-Peterson Task

Brown-Peterson Task: A Variation

- Stimuli given
 cat, dog, cow 428
- Count backwards in 3s
- Recall the words

Results - Brown-Peterson Task

Brown-Peterson Task: Another Variation

- Stimuli given
 cat, dog, cow 428
 bear, lion, fox 345
 rabbit, goose, camel 135
 cherry, banana, apple 246
- Count backwards in 3s
- Recall the words

Results - Brown-Peterson Task

Serial Position

- Read a list of words
- Remember them in any order you want to

Serial Position

Recency

- Some people say your STM capacity is 4 items
 - Since it is how much you can hold as a result of recency effect

WORKING MEMORY

- Rather than a passive storage of information, working memory is like a *workbench*
 - Information is being combined and transformed continuously.

Ss remember (and overtly rehearse) sequences of 0-8 digits At the same time subjects perform a simple reasoning task

A precedes B: AB (TRUE) B is not preceded by A: AB (FALSE)

Reasoning time increases.

Error rate remains at a mere 5%.

The Phonological Loop

- Speech coding
- Rehearsal
- A slave system that takes care of these aspects
- Evidence from three areas:
 - Phonological similarity effect
 - Irrelevant speech effect
 - Word length

Phonological similarity Effect

• Errors tend to be phonologically similar to the target item.

 More errors are observed if similar speech sounds are used in to-be-remembered material

Exp:
 DBCTPJ → harder
 KVYLMH → easier

Irrelevant Speech Effect

- Speech sounds disrupt performance
 Even if they are in another language
- Non-speech noise does not have an effect
 Even if it is VERY loud.

Word Length Effect

- Link between word-length and memory performance
 - Easier to recall a list of shorter words than a list of longer words

Testing the Word Length Effect

- Prevent subjects from rehearsal
 - saying "the the the" outloud while doing the task
- Got rid of the word length effect.

Articulatory Suppression

- Preventing the subjects from rehearsing by making them generate speech repeatedly.
 - Gets rid of
 - Word length effect
 - Phonological Similarity effect
 - Irrelevant speech effect

Phonological Loop

• Considering the evidence at hand, a system that helps us rehearse by sub vocal speech seems to exist.

Individual Differences

• People who speak faster are better rememberers of short-term information

Language	Articulation Rate	Digit Span
Chinese	265ms/digit	9.9
English	321ms/digit	6.6
Welsh	385ms/digit	5.8

(Hoosain & Salili, 1988; Ellis & Hennelly, 1980)

Why do we need a PL?

- What is the advantage?
 - Counting
 - Reading
 - More so, when you are first learning to read, or reading difficult-to-understand texts

– Language Acquisition

Visuo-Spatial Sketch Pad

- Visual Imagery
 - How we store images in our mind.
 - How we manipulate these images.

Imagery and WM

- Study by Brooks (1968):
 - Hold letter **F** in your mind's eye.
 - Classify each corner

Top or BottomNot Top or BottomYESNOSayPointSayPoint

Imagery and WM

• Study by Brooks (1968):

- Sentence: "A bird in the hand is not in the bush."

- Classify each word

Results of Brooks (1968)

Response ModePointingSpeakingTasksentence9.813.8diagram28.211.3

• Pointing interferes with the visual task, since it uses capacity from visuo-spatial sketch pad

Baddeley et al (1973)

- Tracking a moving light with a laser while engaging in the Brooks task.
 - Great difficulty tracking while engaging in the imagery.

The Central Executive

- Most complex and least understood component of WM
 - A limited-capacity attentional system that controls the other slave systems
 - Relates them to LTM
 - Suppresses irrelevant information

Episodic Buffer

- Temporary storehouse where information in gathered from PL, VS, and LTM and combined
 - Limited capacity
 - Information can be either auditory or visual

Working Memory Span

- ... is correlated with:
 - reading comprehension
 - reasoning skill
 - speed of processing

