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Understanding z ScoresUnderstanding z-Scores
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z-Scores

• A z-score is a location on the distribution. A z-
score also automatically communicates the 
raw score’s distance from the mean

• A z-score describes a raw score’s location in 
terms of ho f r bo e or belo the me n itterms of how far above or below the mean it 
is when measured in standard deviations
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z-Score Formula

• The formula for computing a z-score for a 
raw score in a sample is:
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z-Score Formula

• The formula for computing a z-score for a 
raw score in a population is:

Xz μ−
=

X
z

σ
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Example 1

• In a sample with a sample mean of 25 and a 
standard deviation of 5, calculate the z-score 
for the raw score 32.
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Example 2

• In a sample with a sample mean of 50 and a 
standard deviation of 10, calculate the z-score 
for the raw score 44.
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Example 3

• In a population with a mean of 100 and a 
standard deviation of 16, calculate the z-score 
for the raw score 132.
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Computing a Raw Score
• When a z-score is known, this information 

can be used to calculate the original rawcan be used to calculate the original raw 
score. The formula for this is

X= (z)(S ) + XbarX= (z)(Sx) + X
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Computing a Raw Score
• When a z-score is known, this information 

can be used to calculate the original rawcan be used to calculate the original raw 
score. The formula for this is

μσ += ))((zX μσ += ))(( XzX
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Example 4

• In a sample with a sample mean of 25 and a 
standard deviation of 5, calculate the raw 
score for z= -0.43
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Example 5

• In a sample with a sample mean of 50 and a 
standard deviation of 10, calculate the raw 
score for z= -1.30
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Example 6

• In a population with a mean of 100 and a 
standard deviation of 16, calculate the raw 
score for z= +1.40
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Interpreting z ScoresInterpreting z-Scores
Using the z-DistributionUsing the z Distribution
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A z-Distribution

A z-distribution is the distribution produced by z p y
transforming all raw scores in the data into z-
scores.
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z Distribution of Attractivenessz-Distribution of Attractiveness 
Scores
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Characteristics of theCharacteristics of the 
z-Distributionz

1. A z-distribution always has the same      
shape as the raw score distribution

2 Th f di t ib ti l2. The mean of any z-distribution always           
equals 0

3. The standard deviation of any 
di t ib ti l l 1z-distribution always equals 1
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Relative Frequency

• Relative frequency can be computed using 
the proportion of the total area under the 
curve.

• The relative frequency of a particular z-score 
will be the same on all normal z-distributions.
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The Standard Normal Curve

The standard normal curve is a perfect 
normal z-distribution that serves as our model 

f h di ib i h ld l fof the z-distribution that would result from any 
approximately normal raw score distributionpp y
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Standard Normal Curve
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Uses of the Standard Normal Curve

• Calculate relative frequency of a score

• Calculate simple frequency of a score

• Calculate percentile of a score

C l l i il• Calculate a raw score at a certain percentile          
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Proportions of the Standard NormalProportions of the Standard Normal 
Curve
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Example 7

• In a sample with a sample mean of 40 and a 
standard deviation of 4, find the relative 
frequency of the scores above 45.q y
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Example 8

• In a sample with a sample mean of 40 and a 
d d d i i f 4 fi d h il fstandard deviation of 4, find the percentile of 

the score 41.5
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Example 9

• In a sample with a sample mean of 65 and a 
standard deviation of 12, and sample size of 
1000,,
– What is the relative frequency of scores below 59?

How many scores are between the mean and 70?– How many scores are between the mean and 70?
– Which raw score  signifies the top 3%?
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Using z-Scores to Describe 
S pl MSample Means
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Sampling Distribution of Means

A distribution which shows all possible sample 
means that occur when an infinite number of 

l f h i N d lsamples of the same size N are randomly 
selected from one raw score population.p p
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Central Limit Theorem
The central limit theorem tells us the 
sampling distribution of means

1 forms an approximately normal distribution1. forms an approximately normal distribution,

2. has a μ equal to the μ of the underlying raw score 
population, and

3 has a standard deviation that is mathematically3. has a standard deviation that is mathematically 
related to the standard deviation of the raw score 
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Standard Error of the Mean

The standard deviation of the sampling 
distribution of means is called the standard 

f h Th f l f herror of the mean. The formula for the true 
standard error of the mean is

N
X

X
σσ =
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z Score Formula forz-Score Formula for 
a Sample Meanp

The formula for computing a z-score for a 

X μ−
sample mean is

X

Xz
σ

μ
=

X
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E l 10Example 10

If      = 13 , N = 18, μ = 12, and       = 2.5, 
what is the z-score for this sample

X Xσ
what is the z-score for this sample 
mean?
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Example 11

• On a test the population mean is 100, 
population standard deviation is 16 and our 
sample size is 64. What proportion of sample p p p p
means will be above 103?
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Example 12

• In a sample with a sample mean of 150 and a 
standard deviation of 20, and sample size of 
1000,,
– What is the proportion of scores below 100?

What is the proportion of scores above 170?– What is the proportion of scores above 170?
– How many scores are between the mean and 160?
– Which raw score  signifies the top 8%?
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