REGRESSION

Linear Regression

Linear regression is a statistical procedure that uses relationships to predict unknown Y scores based on the X scores from a correlated variable.

Predicted Y Scores The symbol Y' stands for a predicted Y score

• Each Y' is our best prediction of the Y score at a corresponding X, based on the linear relationship that is summarized by the regression line

Linear Regression Line

• The linear regression line is the straight line that summarizes the linear relationship in the scatterplot by, on average, passing through the center of the *Y* scores at each *X*.

Slope and Intercept

- The slope is a number that indicates how slanted the regression line is and the direction in which it slants.
- The Y-intercept is the value of Y at the point where the regression line intercepts, or crosses, the Y axis (that is, when X equals 0).

Regression Lines Having Different Slopes and Y Intercepts

The Linear Regression Equation

This equation indicates that the predicted Y values are equal to the slope (b) times a given X value and that this product then is added to the Y-intercept (a)

Computing the Slope

• The formula for the slope (b) is

$$b = \frac{N(\Sigma XY) - (\Sigma X)(\Sigma Y)}{N(\Sigma X^{2}) - (\Sigma X)^{2}}$$

 Since we usually first compute *r*, the values of the elements of this formula already are known

Computing the *Y*-Intercept

• The formula for the *Y*-intercept (*a*) is

$$a=\overline{Y}-(b)(\overline{X})$$

 For the following data set, calculate the linear regression equation.

X	Y
1	8
2	6
3	6
4	5
5	1
6	3

Plotting the Regression Line

• We compute predicted scores of Y from our X scores using the regression equation and plot them accordingly.

Example 2 Predicted *Y* Value

 Using the linear regression equation from example 1, determine the predicted *Y* score for *X* = 4.

Errors in Prediction

Variance

- The variance of the Y scores around Y' is the average squared difference between the actual Y scores and their corresponding predicted Y' scores.
 - $(S_{Y'}^2)$ is one way to describe the average error when using linear regression to predict *Y* scores.

$$S_{Y'}^2 = S_Y^2 (1 - r^2)$$

The Standard Error of the Estimate

The standard error of the estimate is similar to the standard deviation of the Y scores around their Y' scores and is the clearest way to describe the "average" error when using Y' to predict Y scores.

$$S_{Y'} = S_Y \sqrt{1 - r^2}$$

• Using the same data set, calculate the standard error of the estimate.

X	Y
1	8
2	6
3	6
4	5
5	1
6	3

The Strength of a Relationship and Prediction Error

The Strength of a Relationship

As the strength of the relationship—and the absolute value of *r*—increases, the actual *Y* scores are closer to their corresponding Y' scores, producing less prediction error and smaller values of $S_{Y'}^2$ and $S_{Y'}$.

Scatterplot of a Strong Relationship

Scatterplot of a Weak Relationship

Assumptions of Linear Regression

Assumption 1

• The first assumption of linear regression is that the data are homoscedastic

Homoscedasticity

• Homoscedasticity occurs when the *Y* scores are spread out to the same degree at every *X*.

Heteroscedasticity

• Heteroscedasticity occurs when the spread in *Y* is not equal throughout the relationship.

Assumption 2

• The second assumption of linear regression is that the *Y* scores at each *X* form an approximately normal distribution

Scatterplot Showing Normal Distribution of Y Scores at Each

The Proportion of Variance Accounted For

Proportion of Variance Accounted For

The *proportion of variance accounted for* is the proportional improvement in predictions achieved by using a relationship to predict scores, compared to if we do not use the relationship.

Proportion of Variance

Accounted For

- When we do not use the relationship, we use the overall mean of the *Y* scores (*Y*) as everyone's predicted *Y*.
- The error here is the difference between the actual *Y* scores and the \overline{Y} that we predict they got $(Y - \overline{Y})$.
- When we do not use the relationship to predict scores, our error is S_y^2 .

Proportion of Variance Accounted For

- When we do use the relationship, we use the corresponding Y' as determined by the linear regression equation as our predicted value
- The error here is the difference between the actual Y scores and the Y' that we predict they got (Y - Y')
- When we do use the relationship to predict scores, our error is $S_{Y'}^2$

Proportion of Variance Accounted For

The computational formula for the proportion of variance in *Y* that *is* accounted for by a linear relationship with *X* is r^2 . Remember that the formula for computing *r* is

$$r = \frac{N(\Sigma XY) - (\Sigma X)(\Sigma Y)}{\sqrt{[N(\Sigma X^2) - (\Sigma X)^2][N(\Sigma Y^2) - (\Sigma Y)^2]}}$$

Proportion of Variance Not Accounted For

The computational formula for the proportion of variance in *Y* that *is not* accounted for by a linear relationship with *X* is $1 - r^2$

 Using the same data set, calculate the proportion of variance accounted for and the proportion of variance not accounted for.

X	Y
1	8
2	6
3	6
4	5
5	1
6	3

A researcher measures how positive a persons mood is and how creative he or she is, obtaining the interval scores on the table:

Participant	Mood (X)	Creativity (Y)
1	10	7
2	8	6
3	9	11
4	6	4
5	5	5
6	3	7
7	7	4
8	2	5
9	4	6
10	1	4

Participant	Mood (X)	Creativity (Y)
1	10	7
2	8	6
3	9	11
4	6	4
5	5	5
6	3	7
7	7	4
8	2	5
9	4	6
10	1	4

A) Compute the statistic that summarizes this relationship

Participant	Mood (X)	Creativity (Y)
1	10	7
2	8	6
3	9	11
4	6	4
5	5	5
6	3	7
7	7	4
8	2	5
9	4	6
10	1	4

B) What is the predicted creativity score for anyone scoring 3 on mood?

Participant	Mood (X)	Creativity (Y)
1	10	7
2	8	6
3	9	11
4	6	4
5	5	5
6	3	7
7	7	4
8	2	5
9	4	6
10	1	4

C) If your prediction is in error, what is the amount of error you expect to have?

