Computer Graphics Hardware and Software

Lecture Notes, CEng 477

What is Computer Graphics?

- Different things in different contexts:
 - pictures, scenes that are generated by a computer.
 - tools used to make such pictures, software and hardware, input/output devices.
 - the whole field of study that involves these tools and the pictures they produce.
- Use of computer to define, store, manipulate, interrogate and present pictorial output.

- How pictures are represented in computer graphics?
- How pictures are prepared for presentation?
- How interaction within the picture is accomplished?

Computer Graphics Applications

- Art, entertainment, and publishing
 - movie production, animation, special effects
 - computer games
 - World Wide Web
 - Book, magazine design, photo editing
- CG and Image processing (syntesis vs. analysis)
- Simulations (education, training)
- CAD architectural, circuit design etc.
- Scientific analysis and visualization
- Graphical User Interfaces

Display (Video Display Device)

- Most CG on video monitors
- Still most popular: Cathode Ray Tube (CRT)
- Other popular display types:
 - Liquid Crystal Display
 - Plasma display
 - Field Emission Displays
 - Digital Meromirror Devices
 - Light Emitting Diodes
 - 3D display devices (hologram or page scan methods)

CRT

CRT types

- Direct View Storage Tubes (not CRT, no need for refresh, pictures stored as a permanent charge on phosphor screen)
- Calligraphic refresh CRT (line drawing or vector random scan, need refreshing)
- Raster-scan (point by point refreshing)
- **Refresh rate:** # of complete images (frames) drawn on the screen in 1 second. Frames/sec.
- Frame time: reciprocal of the refresh rate, time between each complete scan. sec/frame

Vector Scan

- Picture definition is stored as a set of line-drawing commands in a refresh buffer.
- to display a picture, the system cycles through the set of commands in the buffer
- Designed for line drawing applications (CAD)

Raster Scan

- Screen is a regular grid of samples called pixels (picture element)
- Screen is refreshed line by line

Interlacing: Avoid flickering affect for small refresh rates.
 interlaced 50Hz: actually 25Hz

- resolution: a 2D term that measures the number of scanlines and the number of pixels on each line (maximum number of points that can be displayed without overlap on a CRT)
- black and white display only binary pixels.
- intensity of a pixel can be achieved by the force of electron beam (gray scale)
- color display?

Color Displays

- Beam penetration method: special phosphors emitting different colors for different intensity of electron. Slow, limited colors.
- Shadow mask method:
 3 electron guns + a shadow mask grid. Intensities of 3 colors result in an arbitrary color pixel. (most TVs and monitors)

- black and white: 1 bit per pixel.
- gray scale: 1 byte per pixel (256 gray levels)
- true color: 3 bytes=24pits per pixel (2²⁴ colors)
- indexed color frame buffer: each pixel uses 1 byte, an index entry in a colormap table matching the color to the actual color.

Vector vs Raster Scan

- raster scan monitors:
 - inexpensive
 - filled areas, patterns
 - refresh process is independent (constant for any complex scene)
- vector scan monitors:
 - Smooth lines. no need for scan conversion: lines to pixels. (raster scan solution antialiasing)
 - sometimes memory and CPU efficient 1000 lines:
 - Vector scan: 2000 endpoints and 1000 operations
 - Raster scan: whole frame buffer 1000 scan conversions.

LCD Displays

- Thinner and lighter. No tube and electron beams.
- Blocking/unblocking light through polarized crystals.
- A matrix of LC cells one for each pixel.
- No refresh unless the screen changes.
- Color 3 cells per pixel.

Simple Raster Display System

- Frame buffer: stored pixel map of screen
- Video controller just refreshes the frame buffer on the monitor periodically.

- Inexpensive
- Scan conversion of output primitives (lines, rectangles etc.) done by the CPU. Slow.
- As refresh cycle increases, memory cycles used by the video controller increases. Memory is less available to CPU.
- Solution: Graphics Display Processor

Graphics Display Processor

- Scan conversion, output primitives, raster operations (double buffering)
- Separete frame buffer

Computer Graphics Software

- Rendering Primitives
 - Models are composed of, or can be converted to, a large number of geometric primitives.
 - Typical rendering primitives directly supported in hardware include:
 - Points (single pixels)
 - Line segments
 - Polygons (perhaps simple, triangle, rectangle)

- Modeling primitives include these, but also
 - Piecewise polynomial (spline) curves
 - Piecewise polynomial (spline) surfaces
 - Implicit surfaces (quadrics, blobbies, etc.)
 - Other....
- Software renderer may support modeling primitives directly, or may convert them into polygonal or linear approximations for hardware rendering

Algorithms • A number of basic algorithms are needed:

- - Transformation: Convert representations of models/primitives from one coordinate system to another
 - Clipping/Hidden surface removal: remove primitives and part of primitives that are not visible on the display
 - Rasterization: Convert a projected screen space primitive to a set of pixels.

Advanced algorithms:

- Picking: select a 3D obejct by clicking an input device over a pixel location.
- Shading and illumination: Simulate the interaction of light with a scene.
- Animation: Simulate movement by rendering a sequence of frames.

Application Programming Interfaces

- X11: 2D rasterization
- Postscript, PDF: 2D transformations, 2D rasterization
- Phigs+, GL, OpenGL, Direct3D: 3D pipeline
- APIs provide access to rendering hardware via conceptual model.
- APIs abstract the hardware implementations and algorithms in standard software calls.

- For 3D interactive applications, we might modify the scene or a model directly or just the change the attributes like viewing information.
- We need to interface to input devices in an event-driven, asynchronous and device independent fashion. APIs and toolkits are also defined for this task. GLUT, Qt, GTK, MFC, DirectX, Motif, Tcl/Tk.

Graphics Rendering Pipeline

• Rendering: conversion from scene to image

- Scene is represented as a model composed of primitives.
 Model is generated by a program or input by a user.
- Image is drawn on an output device: monitor, printer, memory, file, video frame. Device independence.

- Typically rendering process is divided into steps called the graphics pipeline.
- Some steps are implemented by graphics hardware.
- Programmable graphics accelerator, GPU: programmable pipelines in graphics hardware

• The basic forward projection pipeline:

