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Object Representations

● Types of objects:
geometrical shapes, trees, terrains, clouds, rocks, 
glass, hair, furniture, human body, etc.

● Not possible to have a single representation for all

– Polygon surfaces

– Spline surfaces

– Procedural methods

– Physical models

– Solid object models

– .....



Polygon Surfaces

● Set of adjacent polygons representing the object 
exteriors.

● All operations linear, so fast.

● Non-polyhedron shapes can be approximated by 
polygon meshes.

● Smoothness is provided either by increasing the 
number of polygons or interpolated shading methods.

Levels of detail Interpolated shading



Data Structures

● Data structures for representing polygon surfaces:

– Efficiency
● Intersection calculations
● Normal calculations
● Access to adjacent polygons

– Flexibility
● Interactive systems
● Adding, changing, removing vertices, polygons

– Integrity



Polygon Tables

● Vertices   Edges   Polygons

● Forward pointers:
i.e. to access 
adjacent surfaces
edges

V1

V2

V3

V4

V7

V8

V6

V5

E1

E2

E3

E4

E6E11

E7

E10E9

E8

E5V1:(x1,y1,z1)
V2:(x2,y2,z2)
V3:(x3,y3,z3)
V4:(x4,y4,z4)
V5:(x5,y5,z5)
V6:(x6,y6,z6)
V7:(x7,y7,z7)
V8:(x8,y8,z8)

E1: V1,V2

E2: V2,V3

E3: V2,V5

E4: V4,V5

E5: V3,V4

E6: V4,V7

E7: V7,V8

E8: V6,V8

E9: V1,V6

E10: V5,V6

E11: V5,V7

S1: E1,E3,E10,E9

S2: E2,E5,E4,E3

S3: E10,E11,E7,E8

S4: E4,E6,E11

V1: E1,E9   V2: E1,E2,E3

V3: E2,E5   V4: E4,E5,E6

V5: E3,E4E10,E11  V6: E8,E9,E10

V7: E6,E7,E11   V8: E7,E8

E1: S1   E2: S2

E3: S1,S2   E4: S2,S4

E5: S2   E6: S4

E7: S3   E8: S3

E9: S1   E10: S1,S3

E11: S3,S4



● Additional geometric properties:

– Slope of edges

– Normals

– Extends (bounding box)
● Integrity checks 

–

–

–

–

–

∀V , ∃Ea , Ebsuch thatV∈Ea ,V∈Eb
∀ E , ∃S such that E∈S

∀ S , S  is closed

∀ S1, ∃S2  such that S1∩S2≠∅

S k  is listed in Em⇔Em  is listed in S k



Polygon Meshes

● Triangle strips:
123, 234, 345, ..., 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

● Quadrilateral meshes:
n×m array of vertices

1 3

2 4

5

6

7
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12



Plane Equations

● Equation of a polygon surface:

● Surface Normal:

A xB yC zD=0
Linear set of equations:
A/D xkB /D ykC /D zk=−1, k=1,2,3

A= y1 z2−z3 y2 z3−z1 y3 z1−z2
B=z1x2−x3z2x3−x1z3x1−x2
C=x1 y2− y3x2 y3− y1x3 y1− y2
D=−x1 y2 z3− y3 z2−x2 y3 z1− y1 z3−x3 y1 z2− y2 z1

N=A , B ,C 
extracting normal from vertices:
N=V 2−V 1×V 3−V 1

V1

V2

V3

Counterclockwise
order.



● Find plane equation from normal

● Inside outside tests of the surface:

A , B ,C =N
N⋅ x , y , zD=0
P  is a point in the surface (i.e. a vertex) 
D=−N⋅P

A xB yC zD0 ,  point is inside the surface
A xB yC zD0 ,  point is outside the surface



Spline Representations

● Spline curve: Curve consisting of continous curve 
segments approximated or interpolated on polygon 
control points.

● Spline surface: a set of two spline curves matched on 
a smooth surface.

● Interpolated: curve passes through control points

● Approximated: guided by control points but not 
necessarily passes through them.

Interpolated Approximated



● Convex hull of a spline curve: smallest polygon 
including all control points.

● Characteristic polygon, control path: vertices along 
the control points in the same order.



● Parametric equations:

● Parametric continuity: Continuity properties of curve 
segments.

– Zero order: Curves intersects at 
one end-point: C0 

– First order: C0 and curves has same
tangent at intersection: C1 

– Second order: C0 , C1 and curves has 
same second order derivative: C2

x=x u , y= y u , z=z u , u1uu2



● Geometric continuity:
Similar to parametric continuity but only the direction of 
derivatives are significant. For example derivative (1,2) 
and (3,6) are considered equal.

● G0, G1, G2 : zero order, first order, and second order 
geometric continuity.



Spline Equations

● Cubic curve equations:

● General form:
Mg: geometric constraints (control points)
Ms: spline transformation (blending functions)

x u=axu
3bxu

2cxud x
y u=a yu

3b yu
2c yud y 0u1

z u=azu
3bzu

2c zud z

x u=[u3u2u1 ][axbxcxd x]=U⋅C
x u=U⋅M s⋅M g



Natural Cubic Splines
● Interpolation of n+1 control points. n curve 

segments. 4n coefficients to determine 

● Second order continuity. 4 equation for each of n-1 
common points:

4n equations required, 4n-4 so far.

● Starting point condition, end point condition.

● Assume second derivative 0 at end-points or add 
phantom control points p-1, pn+1.

xk 1= pk , xk10= pk , xk
' 1=xk1

' 0 xk
' ' 1=xk1

' ' 0

x10= p0 , xn1= pn

x1
' ' 0=0 , xn

' ' 1=0



● Write 4n equations for 4n unknown coefficients and 
solve.

● Changes are not local. A control point effects all 
equations.

● Expensive. Solve 4n system of equations for changes.



Hermite Interpolation
● End point constraints for each segment is given as:

● Control point positions and first derivatives are given 
as constraints for each end-point.

P 0= pk , P 1= pk1 , P ' 0=Dpk , P ' 1=Dpk1

P u=[u3 u2 u 1 ]⋅[abc
d
] P ' u=[3u2 2u 1 0 ]⋅[abc

d
]

[ pkpk1Dpk
Dpk1

]=[0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

]⋅[abc
d
] [abc

d
]=[0 0 0 1

1 1 1 1
0 0 1 0
3 2 1 0

]
−1

⋅[ pkpk1Dpk
Dpk1

]



● Segments are local. First order continuity

● Slopes at control points are required.

● Cardinal splines and Kochanek-Bartel splines 
approximate slopes from neighbor control points.

[abc
d
]=[0 0 0 1

1 1 1 1
0 0 1 0
3 2 1 0

]
−1

⋅[ pkpk1Dpk
Dpk1

]=[ 2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

]⋅[ pkpk1Dpk
Dpk1

]=M H⋅[ pkpk1Dpk
Dpk1

]
P u= pk 2u

3−3u21 pk1−2u33u2Dpk u
3−2u2uDpk1u

3−u2



Bézier Curves

● A Bézier curve approximates any number of control 
points for a curve section (degree of the Bézier 
curve)



● Polynomial degree of a Bézier curve is one less than the 
number of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve

P u=∑
k=0

n

pk BEZ k , nu , 0u1

BEZ k , nu=nk uk 1−un−k nk = n!
k ! n−k !



● Properties of Bézier curves:

– Passes through start and end points

– First derivates at start and end are:

– Lies in the convex hull

P 0= p0, P 1= pn

P ' 0=−n p0n p1 , P ' 1=−n pn−1n pn



● Joining Bézier curves:

– Start and end points are same (C0)

– Choose adjacent points to start and end in the 
same line (C1)

– For second order (C2) choose the next point in 
terms of the previous 2 of the other segment.

pa ,n= pb ,0 , pb ,1= pa ,n pa ,n− pa ,n−1

pb ,2= pa , n−24  pa ,n− pa ,n−1

pa,0

pb,1
pb,2

pb,3

pa,2
pa,1

   Pa,3      Pb,0



Cubic Bézier Curves

● Most graphics packages provide Cubic Béziers.

● BEZ0,3u=1−u3 BEZ1,3u=3u1−u2

BEZ 2,3u=3u21−u BEZ3,3u=u
3

P u=[u3 u2 u 1 ]⋅M Bez⋅[ p0p1p2p3]
M Bez=[−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0
]



Bézier Surfaces

● Cartesian product of Bézier blending functions:

P u , v=∑
j=0

m

∑
k=0

n

p j , k BEZ j ,mvBEZ k , nu 0u ,v1



Bézier Patches

● A common form of approximating larger surfaces by 
tiling with cubic Bézier patches. m=n=3

● 4 by 4 = 16 control points.

p0,0

p1,0

p0,1

p0,2

p0,3

p1,1

p2,0

p2,1

p1,2

p2,2

p1,3

p2,3

p3,3

p3,2

p3,1



●  Matrix form

● Joining patches:
similar to curves. C0, C1 and C2 can be established by 
choosing control points accordingly.

P u , v =U⋅M Bez⋅P⋅M Bez
T ⋅T T=

[u3 u2 u 1 ]⋅[−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

]⋅[ p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3

]⋅[−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

]⋅[v
3

v2

v
1
]



Displaying Curves and Surfaces

● Horner's rule: less number of operations for 
calculating polynoms.

● Forward differences calculations:
Incremental calculation of  the next value.

– Linear case:

x u=axu
3bxu

2cxud x
x u=axubxucxud x

uk1=uk , k=0,1, 2 ... u0=0
xk=axukbx xk1=ax ukbx
xk1=xk x  x=ax



● Cubic equations

xk=axuk
3bxuk

2cxukd x xk1=axuk3bxuk2cxukd x

 xk=3axuk
23ax

22bxukax
3bx

2cx

 xk1= xk2 xk 2 xk=6ax
2uk6ax

32bx
2

2 xk1=2 xk3 xk 3 xk=6ax
3

x0=d x
 x0=ax

3bx
2cx

2 x0=6ax
32bx

2



● Example:
(ax,bx,cx,dx)=(1,2,3,4), δ = 0.1

3 xk=6ax
3

x0=d x
 x0=ax

3bx
2cx

2 x0=6ax
32bx

2

x  x 2 x
4.000 0.321 0.046
4.321 0.367 0.052
4.688 0.419 0.058
5.107 0.477 0.064
5.584 0.541 0.070
6.125 0.611 0.076
6.736 0.687 0.082
7.423 0.769 0.088
8.192 0.857 0.094
9.049 0.951 0.100

3 xk=63=0.006
} 3 xk



Sweep Representations

● Use reflections, translations and rotations to 
construct new shapes.

P(u)
u

v

u

v



Hierarchical Models

● Combine smaller/simpler shapes to construct 
complex objects and scenes.

● Stored in trees or similar data structures
● Operations are based on traversal of the tree 
● Keeping information like bounding boxes in tree 

nodes accelarate the operations.



Scene Graphs

● DAG's (Directed Acyclic Graphs) to represent scenes 
and complex objects.

● Nodes: Grouping nodes, Transform nodes, Level Of 
Detail nodes, Light Source nodes, Attribute nodes, 
State nodes.
Leaves: Object geometric descriptions.

● Why not tree but DAG?

● Available libraries: i.e. www.openscenegraph.org

● Efficient display of objects, picking objects, state 
change and animations.
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Constructive Solid Geometry

● Combine multiple shapes with set operations 
(intersection, union, deletion) to construct new 
shapes.

●

A∪B A∩B A−B B−A



● Set operations and transformations combined:

● union(transA(box),diff(transB(box),transC(cylinder)))  
 +

T

T

-

T



● Ray casting methods are used for rendering and finding 
properties of  volumes constructed with this method.

● Simply +1 for outside inside
-1 for inside outside transition.
Positives are solid.

A B C D
E ∪  B 1 2 1 0
E ∩  B 1 2 1 0
E -  B 1 0 -1 0
B -  E -1 0 1 0

● Similarly find unit cubes interior to calculate mass, center 
of mass etc.

BE

RAY A C DB



Octrees

● Divide a volume in equal binary partitions in all 
dimensions recursively to represent solid object 
volumes. Combining leaf cubes give the volume.

● 2D: quadtree

1 2 3 4
1 2

3 4



● 2D: quadtree; 3D: octree

● Volume data: Medical data like Magnetic Resonance.
Geographical info (minerals etc.)

● 2D: Pixel ; 3D: voxel.

● Volumes consisting of large continous subvolumes 
with properties. Volumes with many wholes, spaces. 
Surface information is not sufficient or tracktable.

● Keeping all volume in terms of voxels, too expensive: 
space and processor.



● 8 elements at each node.

● If volume completely resides in
a cube, it is not further divided:
leaf node

● Otherwise nodes recursively
subdivided.

● Extends of a tree node is the extend of the cube it 
defines.

● Surfaces can be extracted by traversing the leaves 
with geometrical adjacency.

0
1

3
2

4
5

7

6



Fractal Geometry Methods
● Synthetic objects: regular, known dimension

● Natural objects: recursive (self repeating), the higher the 
precision, the higher the details you get.

● Example: tree branches, terrains, textures.

● Classification:

– Self-similar: scaled-down shape is similar to original

– Self-affine: self similar with different scaling 
parameters and transformations. Statistical when 
random parameters are involved.

– Invariant: non-linear transformations, i.e. Complex 
space.



● Fractal dimension:

– Detail variation of a self similar object. Denoted as D.

– Fragmentation of the object.

●

n sD=1

D=
ln n

ln 1/s

n : number of pieces s : scaling factor

n=4 s=1/3 D= ln 4
ln 1/1/3

=1.2619



Random Mid-point Variation

● Find the midpoint of an edge A-B. Add a random 
factor and divide the edge in two as: A-M, M-A at 
each step.

● Usefull for height maps, clouds, plants.

● 2D:

● 3D:  For corners of a square: A, B, C, D

xm=xAxB/2
ym= yA yB/2r , r : a random value in 0−c
c c× f , f a fraction in 0−1

zAB= zAzB/2r , zBC= zBzC/2r ,
zCD= zCzD/2r , zDA= zDzA/2r
zM= zABzBCzCDzDA/4r

A B

CD

M




