3D OBJECT REPRESENTATIONS

CEng 477
Computer Graphics
METU, 2004

Object Representations

- Types of objects: geometrical shapes, trees, terrains, clouds, rocks, glass, hair, furniture, human body, etc.
- Not possible to have a single representation for all
 - Polygon surfaces
 - Spline surfaces
 - Procedural methods
 - Physical models
 - Solid object models

-

Polygon Surfaces

- Set of adjacent polygons representing the object exteriors.
- All operations linear, so fast.
- Non-polyhedron shapes can be approximated by polygon meshes.
- Smoothness is provided either by increasing the number of polygons or interpolated shading methods.

Data Structures

- Data structures for representing polygon surfaces:
 - Efficiency
 - Intersection calculations
 - Normal calculations
 - Access to adjacent polygons
 - Flexibility
 - Interactive systems
 - Adding, changing, removing vertices, polygons
 - Integrity

Polygon Tables

Vertices

Edges

Polygons

Forward pointers:
 i.e. to access
 adjacent surfaces
 edges

$$V_1$$
: E_1, E_9 V_2 : E_1, E_2, E_3 V_3 : E_2, E_5 V_4 : E_4, E_5, E_6 V_5 : $E_3, E_4 E_{10}, E_{11}$ V_6 : E_8, E_9, E_{10} V_7 : E_6, E_7, E_{11} V_8 : E_7, E_8

- Additional geometric properties:
 - Slope of edges
 - Normals
 - Extends (bounding box)
- Integrity checks
 - $\forall V$, $\exists E_a$, E_b such that $V \in E_a$, $V \in E_b$
 - $\forall E$, $\exists S$ such that $E \in S$
 - $\forall S$, S is closed
 - $\forall S_1, \exists S_2 \text{ such that } S_1 \cap S_2 \neq \emptyset$
 - S_k is listed in $E_m \Leftrightarrow E_m$ is listed in S_k

Polygon Meshes

• Triangle strips: 123, 234, 345, ..., 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Quadrilateral meshes:
 n×m array of vertices

Plane Equations

Equation of a polygon surface:

$$Ax + By + Cz + D = 0$$

Linear set of equations:

$$(A/D)x_k+(B/D)y_k+(C/D)z_k=-1, \quad k=1,2,3$$

$$A = y_1(z_2 - z_3) + y_2(z_3 - z_1) + y_3(z_1 - z_2)$$

$$B = z_1(x_2 - x_3) + z_2(x_3 - x_1) + z_3(x_1 - x_2)$$

$$C = x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$$

$$D = -x_1(y_2 z_3 - y_3 z_2) - x_2(y_3 z_1 - y_1 z_3) - x_3(y_1 z_2 - y_2 z_1)$$

Surface Normal:

$$N = (A, B, C)$$

extracting normal from vertices:

$$N = (V_2 - V_1) \times (V_3 - V_1)$$

Find plane equation from normal

$$(A, B, C)=N$$

 $N \cdot (x, y, z)+D=0$
 P is a point in the surface (i.e. a vertex)
 $D=-N \cdot P$

Inside outside tests of the surface:

$$Ax+By+Cz+D<0$$
, point is inside the surface $Ax+By+Cz+D>0$, point is outside the surface

Spline Representations

- Spline curve: Curve consisting of continous curve segments approximated or interpolated on polygon control points.
- Spline surface: a set of two spline curves matched on a smooth surface.
- Interpolated: curve passes through control points
- Approximated: guided by control points but not necessarily passes through them.

- Convex hull of a spline curve: smallest polygon including all control points.
- Characteristic polygon, control path: vertices along the control points in the same order.

Parametric equations:

$$x = x(u), \quad y = y(u), \quad z = z(u), \quad u_1 \le u \le u_2$$

- Parametric continuity: Continuity properties of curve segments.
 - Zero order: Curves intersects at one end-point: C⁰
 - First order: C^0 and curves has same tangent at intersection: C^1
 - Second order: C⁰, C¹ and curves has same second order derivative: C²

- Geometric continuity:
 Similar to parametric continuity but only the direction of derivatives are significant. For example derivative (1,2) and (3,6) are considered equal.
- G^0 , G^1 , G^2 : zero order, first order, and second order geometric continuity.

Spline Equations

Cubic curve equations:

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$y(u) = a_y u^3 + b_y u^2 + c_y u + d_y \qquad 0 \le u \le 1$$

$$z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

$$x(u) = \left[u^3 u^2 u 1\right] \begin{bmatrix} a_x \\ b_x \\ c_x \\ d_x \end{bmatrix} = \boldsymbol{U} \cdot \boldsymbol{C}$$

• General form: $x(u) = U \cdot M_s \cdot M_g$

 $M_{_{g}}$: geometric constraints (control points)

 M_s : spline transformation (blending functions)

Natural Cubic Splines

- Interpolation of *n*+1 control points. *n* curve segments. 4*n* coefficients to determine
- Second order continuity. 4 equation for each of n-1 common points:

$$x_{k}(1) = p_{k}, \quad x_{k+1}(0) = p_{k}, \quad x'_{k}(1) = x'_{k+1}(0) \quad x''_{k}(1) = x''_{k+1}(0)$$

4n equations required, 4n-4 so far.

Starting point condition, end point condition.

$$x_1(0) = p_0, \quad x_n(1) = p_n$$

• Assume second derivative 0 at end-points or add phantom control points p_{-1} , p_{n+1} .

$$x_1^{\prime\prime}(0)=0$$
, $x_n^{\prime\prime}(1)=0$

- Write 4n equations for 4n unknown coefficients and solve.
- Changes are not local. A control point effects all equations.
- Expensive. Solve 4*n* system of equations for changes.

Hermite Interpolation

End point constraints for each segment is given as:

$$P(0) = p_k$$
, $P(1) = p_{k+1}$, $P'(0) = Dp_k$, $P'(1) = Dp_{k+1}$

 Control point positions and first derivatives are given as constraints for each end-point.

$$\mathbf{P}(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} \qquad \mathbf{P}'(u) = \begin{bmatrix} 3 u^2 & 2 u & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_k \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{p}_k \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_k \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c} \\ \boldsymbol{d} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_{k+1} \\ \boldsymbol{D}\boldsymbol{p}_k \\ \boldsymbol{D}\boldsymbol{p}_{k+1} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_{k+1} \\ \boldsymbol{D}\boldsymbol{p}_k \\ \boldsymbol{D}\boldsymbol{p}_{k+1} \end{bmatrix} = \boldsymbol{M}_H \cdot \begin{bmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_{k+1} \\ \boldsymbol{D}\boldsymbol{p}_k \\ \boldsymbol{D}\boldsymbol{p}_{k+1} \end{bmatrix}$$

$$P(u) = p_k(2u^3 - 3u^2 + 1) + p_{k+1}(-2u^3 + 3u^2) + Dp_k(u^3 - 2u^2 + u) + Dp_{k+1}(u^3 - u^2)$$

- Segments are local. First order continuity
- Slopes at control points are required.
- Cardinal splines and Kochanek-Bartel splines approximate slopes from neighbor control points.

Bézier Curves

 A Bézier curve approximates any number of control points for a curve section (degree of the Bézier curve)

$$P(u) = \sum_{k=0}^{n} p_k BEZ_{k,n}(u), \qquad 0 \le u \le 1$$

$$BEZ_{k,n}(u) = \binom{n}{k} u^k (1-u)^{n-k} \qquad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 Polynomial degree of a Bézier curve is one less than the number of control points.

3 points : parabola

4 points: cubic curve

5 points: fourth order curve

- Properties of Bézier curves:
 - Passes through start and end points

$$P(0)=p_0$$
, $P(1)=p_n$

- First derivates at start and end are:

$$P'(0) = -n p_0 + n p_1, \quad P'(1) = -n p_{n-1} + n p_n$$

Lies in the convex hull

- Joining Bézier curves:
 - Start and end points are same (C⁰)
 - Choose adjacent points to start and end in the same line (C^1)

$$p_{a,n} = p_{b,0}, p_{b,1} = p_{a,n} + (p_{a,n} - p_{a,n-1})$$

- For second order (C^2) choose the next point in terms of the previous 2 of the other segment.

$$p_{b,2} = p_{a,n-2} + 4(p_{a,n} - p_{a,n-1})$$

Cubic Bézier Curves

Most graphics packages provide Cubic Eéziers.

•
$$BEZ_{0,3}(u) = (1-u)^3$$
 $BEZ_{1,3}(u) = 3u(1-u)^2$
 $BEZ_{2,3}(u) = 3u^2(1-u)$ $BEZ_{3,3}(u) = u^3$

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \cdot M_{Bez} \cdot \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

$$M_{Bez} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Bézier Surfaces

Cartesian product of Bézier blending functions:

$$P(u,v) = \sum_{j=0}^{m} \sum_{k=0}^{n} p_{j,k} BEZ_{j,m}(v) BEZ_{k,n}(u)$$
 $0 \le u, v \le 1$

Bézier Patches

- A common form of approximating larger surfaces by tiling with cubic Bézier patches. m=n=3
- 4 by 4 = 16 control points.

Matrix form

$$P(u,v) = U \cdot M_{Bez} \cdot P \cdot M_{Bez}^{T} \cdot T^{T} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} p_{0,0} & p_{0,1} & p_{0,2} & p_{0,3} \\ p_{1,0} & p_{1,1} & p_{1,2} & p_{1,3} \\ p_{2,0} & p_{2,1} & p_{2,2} & p_{2,3} \\ p_{3,0} & p_{3,1} & p_{3,2} & p_{3,3} \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v^{3} \\ v^{2} \\ v \\ 1 \end{bmatrix}$$

• Joining patches: similar to curves. C^0 , C^1 and C^2 can be established by choosing control points accordingly.

Displaying Curves and Surfaces

 Horner's rule: less number of operations for calculating polynoms.

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$x(u) = ((a_x u + b_x) u + c_x) u + d_x$$

- Forward differences calculations:
 Incremental calculation of the next value.
 - Linear case:

$$\begin{array}{lll} u_{k+1} = u_k + \delta \,, & k = 0, 1, 2 \dots & u_0 = 0 \\ x_k = a_x u_k + b_x & x_{k+1} = a_x (u_k + \delta) + b_x \\ x_{k+1} = x_k + \Delta \, x & \Delta \, x = a_x \delta \end{array}$$

Cubic equations

$$x_k = a_x u_k^3 + b_x u_k^2 + c_x u_k + d_x$$
 $x_{k+1} = a_x (u_k + \delta)^3 + b_x (u_k + \delta)^2 + c_x (u_k + \delta) + d_x$

$$\Delta x_k = 3 a_x \delta u_k^2 + (3 a_x \delta^2 + 2 b_x \delta) u_k + (a_x \delta^3 + b_x \delta^2 + c_x \delta)$$

$$\Delta x_{k+1} = \Delta x_k + \Delta^2 x_k$$

$$\Delta^2 x_{k+1} = \Delta^2 x_k + \Delta^3 x_k$$

$$\Delta x_{k+1} = \Delta x_k + \Delta^2 x_k$$

$$\Delta^2 x_k = 6 a_x \delta^2 u_k + 6 a_x \delta^3 + 2 b_x \delta^2$$

$$\Delta^2 x_{k+1} = \Delta^2 x_k + \Delta^3 x_k$$

$$\Delta^3 x_k = 6 a_x \delta^3$$

$$\Delta^3 x_k = 6 a_x \delta^3$$

$$x_0 = d_x$$

$$\Delta x_0 = a_x \delta^3 + b_x \delta^2 + c_x \delta$$

$$\Delta^2 x_0 = 6 a_x \delta^3 + 2 b_x \delta^2$$

$$\Delta^{3} x_{k} = 6 a_{x} \delta^{3}$$

$$x_{0} = d_{x}$$

$$\Delta x_{0} = a_{x} \delta^{3} + b_{x} \delta^{2} + c_{x} \delta$$

$$\Delta^{2} x_{0} = 6 a_{x} \delta^{3} + 2 b_{x} \delta^{2}$$

• Example:

$$(a_x, b_x, c_x, d_x) = (1, 2, 3, 4), \delta = 0.1$$

 $\Delta^3 x_k = 6 \delta^3 = 0.006$

34	Δx	$\Delta^2 x$	
<u> </u>	Δx	$\Delta \lambda$	•
4.000	0.321	0.046	$\Delta^3 x_k$
4.321	0.367	0.052	Δx_k
4.688	0.419	0.058	
5.107	0.477	0.064	
5.584	0.541	0.070	
6.125	0.611	0.076	
6.736	0.687	0.082	
7.423	0.769	0.088	
8.192	0.857	0.094	
9.049	0.951	0.100	

Sweep Representations

• Use reflections, translations and rotations to construct new shapes.

Hierarchical Models

- Combine smaller/simpler shapes to construct complex objects and scenes.
- Stored in trees or similar data structures
- Operations are based on traversal of the tree
- Keeping information like bounding boxes in tree nodes accelarate the operations.

Scene Graphs

- DAG's (Directed Acyclic Graphs) to represent scenes and complex objects.
- Nodes: Grouping nodes, Transform nodes, Level Of Detail nodes, Light Source nodes, Attribute nodes, State nodes.
 - Leaves: Object geometric descriptions.
- Why not tree but DAG?
- Available libraries: i.e. www.openscenegraph.org
- Efficient display of objects, picking objects, state change and animations.

Constructive Solid Geometry

 Combine multiple shapes with set operations (intersection, union, deletion) to construct new shapes.

lacktriangle

• Set operations and transformations combined:

union(transA(box),diff(transB(box),transC(cylinder)))

- Ray casting methods are used for rendering and finding properties of volumes constructed with this method.
- Simply +1 for outside inside
 -1 for inside outside transition.
 Positives are solid.

1 osicives are soliar							
	Α	В	C	D RAY	A BC D		
$E \cup B$	1	2	1	0			
$E \cap B$	1	2	1	0	E		
E - B	1	0	-1	0			
B - E	-1	0	1	0			

 Similarly find unit cubes interior to calculate mass, center of mass etc.

Octrees

 Divide a volume in equal binary partitions in all dimensions recursively to represent solid object volumes. Combining leaf cubes give the volume.

• 2D: quadtree

- 2D: quadtree; 3D: octree
- Volume data: Medical data like Magnetic Resonance.
 Geographical info (minerals etc.)
- 2D: Pixel; 3D: voxel.
- Volumes consisting of large continous subvolumes with properties. Volumes with many wholes, spaces.
 Surface information is not sufficient or tracktable.
- Keeping all volume in terms of voxels, too expensive: space and processor.

- 8 elements at each node.
- If volume completely resides in a cube, it is not further divided: leaf node
- Otherwise nodes recursively subdivided.

- Extends of a tree node is the extend of the cube it defines.
- Surfaces can be extracted by traversing the leaves with geometrical adjacency.

Fractal Geometry Methods

- Synthetic objects: regular, known dimension
- Natural objects: recursive (self repeating), the higher the precision, the higher the details you get.
- Example: tree branches, terrains, textures.
- Classification:
 - Self-similar: scaled-down shape is similar to original
 - Self-affine: self similar with different scaling parameters and transformations. Statistical when random parameters are involved.
 - Invariant: non-linear transformations, i.e. Complex space.

Fractal dimension:

- Detail variation of a self similar object. Denoted as D.
- Fragmentation of the object.

$$ns^{D}=1$$

$$D=\frac{\ln n}{\ln(1/s)}$$

$$n: \text{ number of pieces } s: \text{ scaling factor}$$

$$n: \text{ number of pieces } s: \text{ scaling factor}$$

•
$$n=4$$
 $s=1/3$ $D=\frac{\ln 4}{\ln 1/(1/3)}=1.2619$

Random Mid-point Variation

- Find the midpoint of an edge A-B. Add a random factor and divide the edge in two as: A-M, M-A at each step.
- Usefull for height maps, clouds, plants.
- 2D: $x_m = (x_A + x_B)/2$ $y_m = (y_A + y_B)/2 + r$, r: a random value in 0-c $c \leftarrow c \times f$, f a fraction in 0-1
- 3D: For corners of a square: A, B, C, D

$$\begin{split} z_{AB} &= (z_A + z_B)/2 + r \,, \quad z_{BC} = (z_B + z_C)/2 + r \,, \\ z_{CD} &= (z_C + z_D)/2 + r \,, \quad z_{DA} = (z_D + z_A)/2 + r \\ z_M &= (z_{AB} + z_{BC} + z_{CD} + z_{DA})/4 + r \end{split}$$

