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Object Representations

* Types of objects:
geometrical shapes, trees, terrains, clouds, rocks,
glass, hair, furniture, human body, etc.

* Not possible to have a single representation for all

- Polygon surfaces

- Spline surfaces

- Procedural methods
- Physical models

- Solid object models



Polygon Surfaces

Set of adjacent polygons representing the object
exteriors.

All operations linear, so fast.

Non-polyhedron shapes can be approximated by
polygon meshes.

Smoothness is provided either by increasing the
number of polygons or interpolated shading methods.
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Data Structures

* Data structures for representing polygon surfaces:
- Efficiency
* Intersection calculations
* Normal calculations
* Access to adjacent polygons
- Flexibility
* Interactive systems
* Adding, changing, removing vertices, polygons
- Integrity



Polygon Tables

* Vertices Edges Polygons

Vii(X,Y,,2,) E.: V.V, S,: E,E,EE,
V,:(X,,Y,,Z,) E,: V,,V, S,: E,E,E,E,
VB:(X3'y3'Z3) E3: V2'V5 53: E10'E11'E7'E8
V,:(X,,Y.Z,) E,: V,,V. S,: E,,E.E,,
Vei(X,,YsZ:) Es: V,,V,
Vi (X, YerZ) E.: V,,V,
V-i(X,,Y,,Z,) E,: V., V,
Vi (Xg YgrZg) Eq: Ve,V

Eq: V.,V

ElO: VS’V6

Pt VoV E;:S, E;:S,

* Forward pointers: V,: E,E, V,: E,E,,E, E;:S,,S, E;S,S,
i.e. to access V;: E,E, V,: E,EE, Es:S, B S,
adjacent surfaces Ve E, E,E, E,, Vg EyE, E,, S5 R,
edges Voo EEE, Vg EE E9'.Sl E,ot S,/5;

Eii: S5S,




* Additional geometric properties:

- Slope of edges
- Normals
- Extends (bounding box)
e Integrity checks
- VV, dE,, E,suchthat VEE, VEE,
- V E, ISsuchthat E€S
- VS, S isclosed

- V' §, 385, suchthat NS, #4
— S, ishstedin £, < F 1slistedin S,



Polygon Meshes

2 4

* Triangle strips:
123, 234, 345, ..., 10 11 12

1234567891011 12

* Quadrilateral meshes:
nxm array of vertices
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Plane Equations

* Equation of a polygon surface:

Ax+By+Cz+D=0
Linear set of equations:

(41D)x,+(BID) y,+(CI D) z,=—

1, £k=1,2,3

(Zz Z3)+y2<23_21)+)@<21_22)
B Zl( x3)+22(x3—x1)+z3(x1—x2)

C=x,(y,=y3)+x,(y3= )+ x5y, = »,)

D= x1<Y2Z3 J’322>_x2<J/321_J’123)_x3(Y122_y221>

Surface Normal:
N=(A4,B,C)

extracting normal from vertices:

N:(Vz_Vl)X<V3_V1)

Vs,

Counterclockwise
order.

Vi



* Find plane equation from normal
(4,B,C)=N
N-«(x,y,z)+D=0
P is a point in the surface (1.e. a vertex)
D=—N-P

* Inside outside tests of the surface:

Ax+By+Cz+D<0, pointis inside the surface
Ax+By+Cz+D>0, pointis outside the surface



Spline Representations

* Spline curve: Curve consisting of continous curve
segments approximated or interpolated on polygon
control points.

* Spline surface: a set of two spline curves matched on
a smooth surface.

* Interpolated: curve passes through control points

* Approximated: guided by control points but not
necessarily passes through them.

Interpolated Approximated



* Convex hull of a spline curve: smallest polygon
including all control points.

* Characteristic polygon, control path: vertices along
the control points in the same order.




* Parametric equations:
x=x(u), y=yu), z=z(u), u,<u<u,

* Parametric continuity: Continuity properties of curve
segments.

- Zero order: Curves intersects at M

one end-point: C°

- First order: C°and curves has same N

tangent at intersection: C!

- Second order: C°, C'and curves has ﬁ%\
same second order derivative: C?



* Geometric continuity:
Similar to parametric continuity but only the direction of
derivatives are significant. For example derivative (1,2)
and (3,6) are considered equal.

* G° G*%, G?: zero order, first order, and second order
geometric continuity.



Spline Equations

* Cubic curve equations:
x(u)=a u’+b u+c u+td.
y(u)zayu3+byu2+cyu+dy O<u<l

z(w)=a,u’+b u+c utd,

Q L]

X

x(u)=[u3u2ul} *|=U-C

X

Ny

o

.

X

* General form: x(u)=U-M M,
M, geometric constraints (control points)

M : spline transformation (blending functions)



Natural Cubic Splines

* Interpolation of n+1 control points. n curve
segments. 4n coefficients to determine

* Second order continuity. 4 equation for each of n-1
common points:

(D=pe  x000)=p,,  x(1)=x,,,(0)  x, (1)=x,(0)
4n equations required, 4n-4 so far.

e Starting point condition, end point condition.

x,(0)=p,, x,(1)=p,

* Assume second derivative 0 at end-points or add
phantom control pointsp_, p_...
x, (0)=0, x,(1)=0



* Write 4n equations for 4n unknown coefficients and
solve.

* Changes are not local. A control point effects all
equations.

* Expensive. Solve 4n system of equations for changes.



Hermite Interpolation

* End point constraints for each segment is given as:

P<O>:Pk’ P<1):Pk+1: P'(()):Dpk’ P’<1>:Dpk+1

* Control point positions andfirst derivatives are given
as constraints for each end-point.

a a
P(u)Z[u3 u' u 1}- b P'(u)=[3u2 2u 1 O}- b

c c

.d. .d.
P 0 0 0 1][4] 21 1o 0o o 1" |p,
pk+1 — 1 1 1 1 . b b — 1 1 1 1 . Pk+1
Dp, 0O 0 1 Ofle C O 01 O Dp,
Dp, ., .3 2 1 O. .d. .d. .3 2. 1.0 Dp, .,




21 lo 0 o 1] |p, 2 2 1 1llp, P,
b|_ 1L 1T 1 1) | prs _ —3 3 =2 —=1||Pi —M .| Pt
C O 01 O Dp, 0 0 | 0 Dp, H Dp,
.d. .3 2 1 0. _Dpk+1_ I 0 O. _Dpk+1_ _Dpk+1_

Pu)=p, 2’3+ 1)+ p,. (=20 +3u’)+Dp (v’ —2u’+u)+Dp, (v’ —u’)

* Segments are local. First order continuity
* Slopes at control points are required.

* Cardinal splines and Kochanek-Bartel splines
approximate slopes from neighbor control points.



Bézier Curves

* A Bézier curve approximates any number of control
points for a curve section (degree of the Bezier
curve)




n!

kl(n—k)!

k

* Polynomial degree of a Bézier curve is one less than the
number of control points.
3 points : parabola
4 points : cubic curve
5 points : fourth order curve



* Properties of Bézier curves:

- Passes through start and end points
P(0)=p, P(l)=p,

- First derivates at start and end are:

P'(0)=—np,+np,, P'(1)=—np, +np,

- Lies in the convex hull



* Joining Bezier curves:

- Start and end points are same (C°)

- Choose adjacent points to start and end in the
same line (C?)

pa,n:pb,()’ pb,lzpa,n_l_(pa,n_pa,n—l)

- For second order (C?) choose the next point in
terms of the previous 2 of the other segment.

pb,2:pa,n—2+4<pa,n_pa,n—1>




Cubic Bézier Curves

* Most graphics packages provide Cubic Beziers.

* BEZ,,(u)=(1-u)’  BEZ, ,(u)=3u(l—u)
BEZ,,(u)=3u’(1—u) BEZ,,(u)=u’

Po
Pu)=u’ v u 1}-M3ez- Pi
P>
lp3l




Bézier Surfaces

* Cartesian product of Bézier blending functions:

P(u,v)=)_ > p;«BEZ, ,(v)BEZ, (u)  O0<u,v<Il
=0 k=0
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Bézier Patches

* A common form of approximating larger surfaces by
tiling with cubic Bézier patches. m=n=3

* 4 by 4 = 16 control points.




* Matrix form
P(u,v)=U-My,, P-M,, T =

(98]
1

—1 3 DPoop Pog Po2 Pos||—1

31 3 -3 1|[y

302 | 3 =6 3 0||P Pix P2 Pi3|| 3 -6 3 0],
u u u 1

—3 3 0 0 Do P21 P2y P23 —3 3 0 Oflv

1 0 0 0. | Pso P31 Psp Pss|l l 0 0 O- .1

* Joining patches:
similar to curves. C° C! and C? can be established by
choosing control points accordingly.



Displaying Curves and Surfaces

* Horner's rule: less number of operations for
calculating polynoms.

x(w)=a w’+b u'+c u+td.,
x(u)=((a,u+b J)utc )u+d,

* Forward differences calculations:
Incremental calculation of the next value.

- Linear case:
U, ,=u,+o, k=0,1,2... u,=0
xk:axuk+bx xk+1:ax<uk+5)+bx

X, =X, tAx Ax=a_o




* Cubic equations
x,=au,+b.u,+cu+d. x.,=a (u+6) +b (u+6) +c (u,+5)+d,

Ax,=3a 8u,+(3a.6°+2b_6)u,+(a 8+b.6+c.6)

Ax,  =Ax,+Ax, A’x,=6a.6u,+6a 6 +2b_65

A’x, =Ax,+Ax, | |A'x,=6a.6

xO:dx
Ax,=a 6 +b_6"+c.6
A’x,=6a.5°+2b 65



Ax,=6a. 6

Xy=d,
Ax,=a 6 +b 6 +c 6
A’x,=6a_.6"+2b 65

* Example:
(a,b,c,d)=(1,2,3,4), 6 =0.1

A’x,=66°=0.006

X

Ax

A’ x

4.000
4.321
4.688
5.107
5.584
6.125
6.736
7.423
8.192
9.049

0.321
0.367
0.419
0.477
0.541
0.611
0.687
0.769
0.857
0.951

0.046
0.052
0.058
0.064
0.070
0.076
0.082
0.088
0.094
0.100



Sweep Representations

* Use reflections, translations and rotations to
construct new shapes.

—
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Hierarchical Models

Combine smaller/simpler shapes to construct
complex objects and scenes.

Stored in trees or similar data structures
Operations are based on traversal of the tree

Keeping information like bounding boxes in tree
nodes accelarate the operations.



Scene Graphs

DAG's (Directed Acyclic Graphs) to represent scenes
and complex objects.

Nodes: Grouping nodes, Transform nodes, Level Of
Detail nodes, Light Source nodes, Attribute nodes,
State nodes.

Leaves: Object geometric descriptions.

Why not tree but DAG?
Available libraries: i.e. www.openscenegraph.org

Efficient display of objects, picking objects, state
change and animations.






Constructive Solid Geometry

* Combine multiple shapes with set operations
(intersection, union, deletion) to construct new
shapes.

AUB ANB



* Set operations and transformations combined:

* union(transA(box) ,diff(transB(box),transC(cylinder)))




* Ray casting methods are used for rendering and finding
properties of volumes constructed with this method.

* Simply +1 for outside inside
-1 for inside outside transition.
Positives are solid.
A B C D RAY

EuB 1 2 1 0
ENB 1 2 1 0 E
E- B 1 0 -1 0
B- E -1 0) 1 0

* Similarly find unit cubes interior to calculate mass, center
of mass etc.




Octrees

* Divide a volume in equal binary partitions in all
dimensions recursively to represent solid object
volumes. Combining leaf cubes give the volume.

e 2D: quadtree

([T

1 2
1 2 3 4 —
00
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* 2D: quadtree; 3D: octree

* Volume data: Medical data like Magnetic Resonance.
Geographical info (minerals etc.)

e 2D: Pixel ; 3D: voxel.

* Volumes consisting of large continous subvolumes
with properties. Volumes with many wholes, spaces.
Surface information is not sufficient or tracktable.

* Keeping all volume in terms of voxels, too expensive:
space and processor.



8 elements at each node.

6
If volume completely resides in 4
a cube, it is not further divided: )

leaf node 0
Otherwise nodes recursively / 3 2
subdivided.

Extends of a tree node is the extend of the cube it
defines.

Surfaces can be extracted by traversing the leaves
with geometrical adjacency.



Fractal Geometry Methods

Synthetic objects: regular, known dimension

Natural objects: recursive (self repeating), the higher the
precision, the higher the details you get.

Example: tree branches, terrains, textures.
Classification:

- Self-similar: scaled-down shape is similar to original

- Self-affine: self similar with different scaling
parameters and transformations. Statistical when
random parameters are involved.

- Invariant: non-linear transformations, i.e. Complex
space.



* Fractal dimension:
- Detail variation of a self similar object. Denoted as D.

- Fragmentation of the object.

D
ns =1
Inn n: number of pieces s: scaling factor

D_lml/S)
/N PN
Y

£ e - MMM

B

P 2t

In4
e n1=4 =1/3 D= =1.2619
7 > In1/(1/3)




Random Mid-point Variation

Find the midpoint of an edge A-B. Add a random
factor and divide the edge in two as: A-M, M-A at
each step.

Usefull for height maps, clouds, plants.

V=V 4+ Y pi2+1, r: arandom value in 0-c

cecxf, f afraction in 0-1

3D: For corners of a square: A, B, C, D

2=z, +z)12+r, zz.=(zp+z.)2+F, A B
Zep=(zp+zp)24+r,  zp=(zp+z,)I2+F M
zy=(z gt zgctzeptzp)ld+r
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