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TENSION VERSUS COMPRESSION AND EULER BUCKLING 

 

 

Sometimes supporting a load in tension is more problematic and more risky than 

supporting the same load in compression; but this doesn’t have to be always true. With 

unreliable materials and with primitive joints, for example, tension can cause catastrophic 

results. However, in modern technology as well as in nature, a tension structure is often the 

lightest, cheapest, and safest solution. Some compressive constructions, despite of being 

simple and fairly reliable, such as masonry, they are heavy and consume a lot of labour. 

Nature does not offer many examples of compressive structures, but anthills are a rare 

exception. Such a design is quite unsuitable that have characteristics of living things. 

 

The way in which materials fail under tension is much different than the way they fail 

under compression.  

 

Failure in tension usually occurs 

by a separation of the molecules at the 

weakest cross section of the member. 

With a uniform member, the length 

does not make any difference to the 

strength in tension under static loading. 

 

The behaviour of materials that 

fail under compression depends on their 

length. A low wall of bricks, a short 

material strut, or a short bone may 

remain straight and stable under the 

load until the material finally fails 

because of a local crushing mechanism. 

A longer strut or a higher wall is liable 

to buckle even under a light load. 

 

The Swiss mathematician Leonard 

Euler (1707-1783) derived a formula for 

calculating the load at which a long rod 

will buckle when it is subjected to a 

compressive force along its length.  

 

Euler interest in the problem arose 

rather because he had just invented the 

calculus of variations, and he was 

looking for a problem to try it out on. Someone suggested that he might attempt to calculate 

the height of a vertical rod that would buckle under its own weight.  Euler succeeded in 

calculating the length of the rod, and his first results were incorporated in a book published in 

1744. 

 



Although Euler’s calculations are correct as far as they go, his work antedated the 

concepts of the stress and strain by almost a century, and he did not have access to Young’s 

modulus. For these reasons his work would have had limited practical application at the time. 

 

 
 

 

In the modern technology, Euler says that a long road or column will buckle at an axial 

load P according to equation: 

 

 
 

Where E is Young’s modulus, I is the 

second moment of area of the cross section 

of the rod (sometimes wrongly called the 

moment of inertia), L is the length of the 

rod, k is a constant that depends on the end 

conditions-that is, on the extent to which 

the ends of the rod are held stationary or 

are free to rotate. When both ends are pin-

joined (i.e., allowed to rotate), the value of 

k is 1. When both ends are clamped (i.e., 

fixed in direction and position), the value 

of k is 4.  When one end is fixed and the 

other free, k is equal to ¼. 

 

 

 

 

 

 

 

Buckling load for a rod depends on:   



 

- The unsupported length of the rod: 

 

The length of the rod is highly effective in buckling. Longer rods may buckle with 

smaller forces. If the rod is not supported (having 2 free ends), all the length would be 

considered as unsupported length. This unsupported length change due to various fixing 

conditions.  

 

-Stifness: 

The stiffness, k, of a body is a measure of the resistance offered by an elastic body to 

deformation (bending, stretching or compression). 

 
  

P is a steady force applied on the body 

δ is the displacement produced by the force (for instance, the deflection of a beam, or 

the change in length of a stretched spring) 

 

The stiffness is directly proportional to Modulus of Elasticity which is an important 

factor in buckling load. To prevent buckling developments of high-stiff fibers, boron, 

graphite is used for some advanced composite materials 

 

 -Second moment of Area of the cross-section: 

 

 
  

It’s easier to change the I value of material rather than changing the material itself. 

Increasing the second moment of area is possible by changing the dimensions of given rod or 

by changing the shape. Using hollow sections such as tubes, struts would lead to high I value. 

(Note that minimum of Ix; Iy should be taken considering the material may buckle in both 

directions). In Nature hollow bamboos and leg bones use this strategy to prevent buckling. 

 

The buckling load of a strut or panel is not necessarily the breaking load. In fact, as 

we can deduce from Euler’s formula the actual compressive stress at which long struts will 

buckle may be very small. So, when the compressive load is taken of , the strut may recover 

undamaged. It may simply spring back like a bow. 



Buckling is a useful safety mechanism in the real world. For example many small 

plants such as grass buckles so easily (before high compressive load can be applied) and then 

recovers. If there were no buckling all the grasses that human and other animals step would 

have deformed heavily and probably die. 

 

 
 

Long and thin grasses are easily buckled. 

 

There are some cases in which buckling are used for safety mechanism for animals. 

Hedgehogs are one of these examples. Hedgehogs can easily climb trees in search of food. 

However, it is hard for them to climb down. So, they curl themselves like a ball and fall to 

ground. Their close spines buckle in an Eulerian manner on the impact and absorb the energy 

of the fall and mitigate the shock of the impact. 

 

 

 
 

The thin spines of a hedgehog would buckle on an impact protecting the hedgehogs. 
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