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                       TORSION 

 

1- Mechanics of Materials Approach                                   2- Prandtl Stress Function Approach 

-more sufficient for axial cylinder problem 

       Sufficient                              insufficient                   sufficient 

  

 

 

 

 

 

 

 

 

 

 

1-) Mechanics of Material Approach to Torsion of Circular Bars 

 

  



Assumptions: 

1-) All plane sections perpendicular to torsion axis z remain perpendicular. 

2-) Cross sections are undistorted in their individuals planes 

 -Shearing strain Ɣ varies linearly from at the center to a maximum at the outer surface 

3-) Material is homogenous 
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Where  𝜌2 𝑑𝐴 is polar moment of inertia   
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Note: Polar moment of inertia for circle of radius r ;     J=
𝜋 .𝑟4
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  Angle of Twist Φ: 

Φ.r = Ɣmax.L    
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      J.G : Torsional rigidity 

 

 



2) theory of elasticity approach to torsion of bar 
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u=-(rθz)sinα=-yθz 

v=(rθz)cosα =x θz 

where the angular displacement of AP at a distance  Z from the left end is θz 

εx=γxy=εy=εz=0 
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σx= σy= σz=τxy=0 
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assuming negligible body foces 
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Differentiating the equation 1 and 2 w.r.t. y and x respectively , we have 
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Where  

H=−2𝐺𝜃 

P(x,y) is located a distance r from  the center                                



 

Stress function 

As in the case of a beam the torsion problem formulated in the preceding is commonly solved by introducing 

a single stress function. If a function. If a function ϕ(x,y), the Prandtl stress function is assumed to exist, 

such that 

                τzx=
𝜕𝜙

𝜕𝑦
   ,                τzy= −

𝜕𝜙

𝜕𝑥
    

 

  

Boundary conditions  
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cosine of the angle between z and a unit normal n to the surface is zero that is cos(n,z) =0 we have  

           τzxl + τzym=0 

τ must be tangent to the surface  
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so on the boundary we have             
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