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Shear Diagram

EXAMPLE 4-9

Bracket for Exarmple 4-9

14 Combined Bending and Torsional Stresses
100
Problem Find the most highly stressed locations on the bracket shown in Figure
- 4-30 and determine the applied and principal stresses at those locatiens.
5
Given The rod length / = 6 in and arm & = 8 in. The rod outside diameter 4 =
1.5in. 'Load F =1 000 Ib. :
o0 2 4 6 Assumptions  The load is static and the assembly is at room temperature. Consider
. shear due to transverse loading as well as other stresses.
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Loading Diagrams for
Bending Shear, Moment, and
Torque in Example 4-9

s

M Solution See Figures 4-30 to 4-33.

We will limit our investigation to the rod which is loaded both in bending (as a
cantilever beam) and in torsion. {The arm would also need to be analyzed for a
complete design.) First, the load distributions over the rod’s length need to be
determined by drawing shear, moment, and torque diagrams for the rod.

The shear and moment diagrams will look similar to those for the cantilever beam in
Example 4-3, the difference being that this force is at the end of the beam rather than
at some intermediate point, Figure 4-31 shows that the shear force is uniform across
the beam length and its magnitude is equal to the applied loud Vg, = F= 1000 Ib.
The maximum moment occurs at the wall and its magnitude is My, = FI=(1 000)
(6) = 6 000 Ib-in. (See Example 4-5 for derivations.)

The torque applied to the rod is due to the force F acting at the end of the 8-in arm
and is Ty = Fa = (1 000) (8) = 8 000 Ib-in. Note that this torque is uniform over
the length of the rod as it can only be reacted against by the wall. Figure 4-31 shows
all three of these loading functions. It is clear from these plots that the most heavily
loaded-cross section is at the wall, where all three loads are maximum.

We will now take a section through the rod at the wall and examine the stress distribu-
tions within it due to these external loads, Figure 4-32a shows the distribution across
{he section of the normal bending stresses, which are a maximum (+/-) at the oufer
fibers and zero at the neusral axis. The shear stress due to transverse loading is &
maximum at all points in the neutral (xz) piane and zero at the outer fibers (Figure
4-32b).



Chapter 4 STRESS, STRAIN, AND DEFLECTION

The shear stress due to torsion is proportional to the radius so is zero at the center
and a maximum at all points on the outer surface as shown in Figure 4-32¢. Note the
differences between the distributions of the normal bending stress and the torsional
shear stress, The bending stress magnitude is proportional to the distance v from the
neutral plane and so is maximum at only the top and bottom of the section, whereas
the torsional shear stress is maximal all around the perimeter.

We choose two points, A and 8 of Figure 4-30, to analyze (also shown in Figure
4-33a) because they have the worst combinations of stresses. The largest tensile
bending stress will be in the top outer fiber at point A, and it combines with the
largest torsional shear stress that is all around the outer circumference of the rod. A
differential element taken at point A is shown in Figure 4-335. Note that the normal
stress (Gy) acts on the x Tace in the x direction and the torsional shear stress (.} acts
on the x face in the +z direction.

At point B the torsional shear stress has the same magnitude as at point A, but the
direction of the torsional shear stress (T,y) at point B is 90° different than at point A,
The shear stress due to transverse loading (Ty,) is a maximum at point B. Note that
these shear stresses both act in the —y direction on the x face at point B as shown in
Figure 4-33¢. The transverse and torsional shear stresses then add at point B.

Find the normal bending stress and torsional shear stress on point A using equations
4.115 (p. 134) and 4.195 (p. 161), respectively.

o = Mc _ (Fl)e _ 10006)075) _ ¢ 00 i "
I 0.249

2T (Fa)r _ 1000(8)(0.75) _ ) oo i )
Uy 0.497

Find the maximum shear stress and principal stresses that result from this combina-
tion of applied stresses using equations 4.6 (p. 143).

2 2
(——G-";GZJ +12 =\/(—18108_0) +120722 =15 090 psi

Tiay = \ 7
.+. - .
o= T, = T8108 . 15090 = 24 144 psi
O, = 0 (C)
oy = 2a :°= Ty = lggﬂ— 15 090 = —6 036 psi

Find the shear due to transverse loading at point # on the neutral axis. The maxi-
mum transverse shear stress at the neutral axis of a round rod was given as equation
4.15¢ (p. 159).

4y _ 4(1000)

Thending = i = m = 755 psi

{d)
Point 8 is in pure shear. The total shear stress at point B is the algebraic sum of the
transverse shear stress and the torsional shear stress, which both act on the same

* planes of the differential element.

Tuax = Tworsion Chending = 12072+755=12827 psi ()

(a) Bending normai-
stress distribution
across section

(b} Transverse shear-
stress distribution
across section

(¢} Torsional shear-
stress distribution
across section
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Cross Sections of Rod for
Example 4-9



182

’ (2} Two points of
interest for
skress calcuiations
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which from equation 4.6 or the Mohr’s circle can be shown to be equal to the largest
principal stress for this point.

B Point A has the larger principal stress in this case, but note that the relative values of
the applied torque and moment determine which of these two points will have the
higher principal stress. Both points must then be checked. See files EX04-09 on CD.

Stress Elements at Points A and
B within Cross Section of Red

for Example 4-9

4.14 SPRING RATES

Every part made of material having an elastic range can behave as a spring. Some parts
are designed to function as springs, giving a controfled and predictable deflection in
response to an applied load or vice versa. The “springiness” of a part is defined by its
spring rate &, which is:the load per unit deflection. For rectilinear motion springs,

hk=— (4.27a)

where F is the applied load and y is the resulting deflection. Typical units are 1b/in or
N/m. For angular motion springs the general expression is

k=-— (4.27h)

where T'is the applied torque and 8 is the resulting angular deflection. Typical units are
in-Ib/rad or N-m/rad, or sometimes expressed as in-1b/rev or N-m/rev.

The spring rate equation for any part is gasily obtained from the relevant deflec-
tion equation, which provides a relationship between force {or torque) and deflection.
For example, for a uniform bar in axial tension, the deflection is given by equation 4.8,
repeated here and rearranged to define its axial spring rate.
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This is a constant spring rate, dependent only on the bar’s geometry and its material
properties.

For a uniform-section round bar in pure torsion, the deflection is given by equa-
tion 4.24 (p. 174), repeated here and rearranged to define its torsional spring rate:

g=1L __
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This is also a constant spring rate, dependent only on the bar’s geometry and material
properties.




