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Value and Type

What are Value and Type?

Value anything that exist, that can be computed, stored, take
part in data structure.
Constants, variable content, parameters, function return
values, operator results...

Type set of values of same kind.
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Value and Type

What are Value and Type?

Value anything that exist, that can be computed, stored, take
part in data structure.
Constants, variable content, parameters, function return
values, operator results...

Type set of values of same kind.
C types:

int, char, long,...

float, double

pointers
structures: struct, union

arrays
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Haskell types

Bool, Int, Float, ...

Char, String

tuples,(N-tuples), records
lists
functions

Each type represents a set of values. Is that enough?
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Haskell types

Bool, Int, Float, ...
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lists
functions

Each type represents a set of values. Is that enough?
What about the following set? Is it a type?
{"ahmet", 1 , 4 , 23.453, 2.32, ’b’}
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Value and Type

Haskell types

Bool, Int, Float, ...

Char, String

tuples,(N-tuples), records
lists
functions

Each type represents a set of values. Is that enough?
What about the following set? Is it a type?
{"ahmet", 1 , 4 , 23.453, 2.32, ’b’}
Values should exhibit a similar behavior. The same group of
operations should be defined on them.
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Primitive vs Composite Types

Primitive Types: Values that cannot be decomposed into
other sub values.
C: int, float, double, char, long, short, pointers
Haskell: Bool, Int, Float, function values

cardinality of a type: The number of distinct values that a
datatype has. Denoted as: ”#Type”.
#Bool = 2 #char = 256 #short = 216

#int = 232 #double = 232, ...

What does cardinality mean?
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Primitive vs Composite Types

Primitive vs Composite Types

Primitive Types: Values that cannot be decomposed into
other sub values.
C: int, float, double, char, long, short, pointers
Haskell: Bool, Int, Float, function values

cardinality of a type: The number of distinct values that a
datatype has. Denoted as: ”#Type”.
#Bool = 2 #char = 256 #short = 216

#int = 232 #double = 232, ...

What does cardinality mean? How many bits required to store
the datatype?
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Primitive vs Composite Types

User Defined Primitive Types

enumerated types
enum days {mon, tue, wed, thu, fri, sat, sun};
enum months {jan, feb, mar, apr, .... };
ranges (Pascal and Ada)
type Day = 1..31;

var g:Day;

Discrete Ordinal Primitive Types Datatypes values have one
to one mapping to a range of integers.
C: Every ordinal type is an alias for integers.
Pascal, Ada: distinct types

DOPT’s are important as they
i. can be array indices, switch/case labels
ii. can be used as for loop variable (some languages like
pascal)
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Composite Datatypes

User defined types with composition of one or more other
datatypes. Depending on composition type:

Cartesian Product (struct, tuples, records)
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Cartesian Product (struct, tuples, records)

Disjoint union (union (C), variant record (pascal), Data
(haskell))
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Composite Datatypes

User defined types with composition of one or more other
datatypes. Depending on composition type:

Cartesian Product (struct, tuples, records)

Disjoint union (union (C), variant record (pascal), Data
(haskell))

Mapping (arrays, functions)
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Composite Datatypes

User defined types with composition of one or more other
datatypes. Depending on composition type:

Cartesian Product (struct, tuples, records)

Disjoint union (union (C), variant record (pascal), Data
(haskell))

Mapping (arrays, functions)

Powerset (set datatype (Pascal))
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Primitive vs Composite Types

Composite Datatypes

User defined types with composition of one or more other
datatypes. Depending on composition type:

Cartesian Product (struct, tuples, records)

Disjoint union (union (C), variant record (pascal), Data
(haskell))

Mapping (arrays, functions)

Powerset (set datatype (Pascal))

Recursive compositions (lists, trees, complex data structures)
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Cartesian Product

S × T = {(x , y) | x ∈ S , y ∈ T}
Example:
S = {a, b, c} T = {1, 2}
S × T = {(a, 1), (a, 2), (b, 1), (b, 2), (c , 1), (c , 2)}
•a
•b
•c

× •1
•2 =

•(a,1) •(a,2)
•(b,1) •(b,2)
•(c,1) •(c,2)

#(S × T ) =
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Cartesian Product

Cartesian Product

S × T = {(x , y) | x ∈ S , y ∈ T}
Example:
S = {a, b, c} T = {1, 2}
S × T = {(a, 1), (a, 2), (b, 1), (b, 2), (c , 1), (c , 2)}
•a
•b
•c

× •1
•2 =

•(a,1) •(a,2)
•(b,1) •(b,2)
•(c,1) •(c,2)

#(S × T ) =#S · #T
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Cartesian Product

C struct, Pascal record, functional languages tuple

in C: string × int

struct Person {

char name[20];
int no;

} x = {"Osman Hamdi" ,23141};

in Haskell: string × int

type Peop le =(String ,Int)
...

(x::Peop le ) = ("Osman Hamdi" ,23141)
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Cartesian Product

Multiple Cartesian products:
C: string × int × {MALE,FEMALE}
struct Person {

char name[20];
int no;
enum Sex {MALE, FEMALE} s ex ;

} x = {"Osman Hamdi" ,23141,FEMALE};

Haskell: string × int × float × String

x = ("Osman Hamdi" ,23141,3.98,"Yazar")
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Cartesian Product

Homogeneous Cartesian Products

Sn =

n
︷ ︸︸ ︷

S × S × S × ... × S

double4 :

struct quad { double x,y,z ,q; };

S0 = {()} is 0-tuple.

not empty set. A set with a single value.

terminating value (nil) for functional language lists.

C void. Means no value. Error on evaluation.
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Disjoint Union

S + T = {left x | x ∈ S} ∪ {right x | x ∈ T}
Example:
S = {1, 2, 3} T = {3, 4}
S + T = {left 1, left 2, left 3, right 3, right 4}
•1
•2
•3

+
•3
•4 =

•left 1 •left 2
•left 3
•right 3 •right 4

#(S + T ) =
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Disjoint Union

Disjoint Union

S + T = {left x | x ∈ S} ∪ {right x | x ∈ T}
Example:
S = {1, 2, 3} T = {3, 4}
S + T = {left 1, left 2, left 3, right 3, right 4}
•1
•2
•3

+
•3
•4 =

•left 1 •left 2
•left 3
•right 3 •right 4

#(S + T ) =#S + #T

C union’s are disjoint union?
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Disjoint Union

C: int + double:

union number { double r e a l ; int i n t e g e r ; } x;

C union’s are not safe! Same storage is shared. Valid field is
unknown:

x. r e a l =3.14; p r i n t f ("%d\n",x. i n t e g e r );

Haskel: Float + Int + (Int × Int):

data Number = Rea lVa l Float | I n tV a l Int | Rational (Int ,Int)

x = Rational (3,4)

y = Rea lVa l 3.14

z = I n tV a l 12 {-- You cannot access different values --}
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Mappings

The set of all possible mappings

S 7→ T = {V | ∀(x ∈ S)∃(y ∈ T ), (x 7→ y) ∈ V }
Example: S = {a, b} T = {1, 2, 3}

•a
•b

•1
•2
•3

Each color is a mapping value
There are many others

S 7→ T = {{a 7→ 1, b 7→ 1}, {a 7→ 1, b 7→ 2}, {a 7→ 1, b 7→ 3},
{a 7→ 2, b 7→ 1}, {a 7→ 2, b 7→ 2}, {a 7→ 2, b 7→ 3},
{a 7→ 3, b 7→ 1}, {a 7→ 3, b 7→ 2}, {a 7→ 3, b 7→ 3}}
#(S 7→ T ) =
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Mappings

Mappings

The set of all possible mappings

S 7→ T = {V | ∀(x ∈ S)∃(y ∈ T ), (x 7→ y) ∈ V }
Example: S = {a, b} T = {1, 2, 3}

•a
•b

•1
•2
•3

Each color is a mapping value
There are many others

S 7→ T = {{a 7→ 1, b 7→ 1}, {a 7→ 1, b 7→ 2}, {a 7→ 1, b 7→ 3},
{a 7→ 2, b 7→ 1}, {a 7→ 2, b 7→ 2}, {a 7→ 2, b 7→ 3},
{a 7→ 3, b 7→ 1}, {a 7→ 3, b 7→ 2}, {a 7→ 3, b 7→ 3}}
#(S 7→ T ) =#T#S
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Mappings

Arrays

Arrays

double a[3]={1.2,2.4,-2.1};
a ∈ ({0, 1, 2} 7→ double)
a = (0 7→ 1.2, 1 7→ 2.4, 2 7→ −2.1)

Arrays define a mapping from an integer range (or DOPT) to
any other type

C: T x[N] ⇒ x ∈ ({0, 1, ...,N − 1} 7→ T )

Other array index types (Pascal):

type

Day = (Mon,Tue,Wed,Thu, Fr i ,Sat ,Sun);
Month = (Jan ,Feb ,Mar,Apr ,May,Jun , Ju l ,Aug,Sep ,Oct ,Nov,Dec);

var

x : array Day of real;

y : array Month of integer;

...

x[Tue] := 2.4;

y[Feb] := 28;
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Mappings

Functions

Functions

C function:

int f (int a) {

if (a%2 == 0) return 0;

else return 1;

}

f : int 7→ {0, 1}
regardless of the function body: f : int 7→ int

Haskell:

f a = if mod a 2 == 0 then 0 else 1

in C, f expression is a pointer type int (*)(int)

in Haskell it is a mapping: int7→int
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Mappings

Functions

Array and Function Difference

Arrays:

Values stored in memory

Restricted: only integer
domain

double7→double ?

Functions

Defined by algorithms

Efficiency, resource usage

All types of mappings
possible

Side effect, output, error,
termination problem.

Cartesian mappings:
double a[3][4];

double f(int m, int n);

int×int7→double and int7→(int7→double)
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Mappings

Functions

Cartesian Mapping vs Nested mapping

Pascal arrays

var

x : array [1..3 ,1..4] of doub l e ;
y : array [1..3] of array [1..4] of doub l e ;

...

x[1,3] := x [2 ,3]+1; y[1,3] := y[2 ,3]+1;

Row operations:
y[1] := y[2] ;

√

x[1] := x[2] ; ×

x y

→
→
→
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Mappings

Functions

Haskell functions:

f (x,y) = x+y
g x y = x+y
...

f (3+2)

g 3 2

g 3
√

f 3 ×
Reuse the old definition to define a new function:
increment = g 1

increment 1

2
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Powerset

Powerset

P(S) = {T | T ⊆ S}
The set of all subsets

S =
•1
•2
•3

P(S) =
•∅ •{1} •{2} •{3}
•{1, 2} •{1, 3}
•{2, 3} •{1, 2, 3}

#P(S) =
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Powerset

Powerset

P(S) = {T | T ⊆ S}
The set of all subsets

S =
•1
•2
•3

P(S) =
•∅ •{1} •{2} •{3}
•{1, 2} •{1, 3}
•{2, 3} •{1, 2, 3}

#P(S) =2#S
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Powerset

Set datatype is restricted and special datatype. Only exists in
Pascal and special set languages like SetL

set operations (Pascal)

type

c o l o r = ( red , green , b lue ,white , b l a ck );
c o l o r s e t = set of c o l o r ;

var

a,b : c o l o r s e t ;
...

a := [ red , b l u e ];
b := a*b; (* intersection *)

b := a+[ green , r ed ]; (* union *)

b := a-[ b l u e ]; (* difference *)

if ( green in b) then ... (* element test *)

if (a = []) then ... (* set equality *)

in C++ supported by library.



Programming Languages/Values and Types

Recursive Types

Lists

Recursive Types

S = ...S ...

Types including themselves in composition.

Lists

S = Int × S + {null}

S = {right empty} ∪ {left (x , empty) | x ∈ Int}∪
{left (x , left (y , empty)) | x , y ∈ Int}∪
{left (x , left (y , left (z , empty))) | x , y , z ∈ Int} ∪ ...

S =
{right empty , left(1, empty), left(2, empty), left(3, empty), ...,
left(1, left(1, empty)), left(1, left(2, empty)), left(1, left(3, empty), ...,
left(1, left(1, left(1, empty))), left(1, left(1, left(2, empty))), ...}
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Recursive Types

Lists

C lists: pointer based. Not actual recursion.

struct L i s t {

int x;
L i s t * next ;

} a;
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Recursive Types

Lists

C lists: pointer based. Not actual recursion.

struct L i s t {

int x;
L i s t * next ;

} a;

Haskell lists.

data List = Left (Int ,List) | Empty

x = Left (1, Left(2, Left(3,Empty))) {-- [1 ,2 ,3] list --}

y = Empty {-- empty list , []

--}
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Recursive Types

Lists

Polymorphic lists: a single definition defines lists of many
types.
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Recursive Types

Lists

Polymorphic lists: a single definition defines lists of many
types.

List α = α × (List α) + {empty}
data List a lpha = Left ( a lpha ,List a lpha ) | Empty

x = Left (1, Left(2, Left(3,Empty))) {-- [1 ,2 ,3] list --}

y = Left ("ali",Left("ahmet",Empty)) {-- [" ali"," ahmet "] --

z = Left (23.1, Left (32.2, Left (1.0,Empty))){-- [23.1 ,32.2 ,1.0] -
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Recursive Types

Lists

Polymorphic lists: a single definition defines lists of many
types.

List α = α × (List α) + {empty}
data List a lpha = Left ( a lpha ,List a lpha ) | Empty

x = Left (1, Left(2, Left(3,Empty))) {-- [1 ,2 ,3] list --}

y = Left ("ali",Left("ahmet",Empty)) {-- [" ali"," ahmet "] --

z = Left (23.1, Left (32.2, Left (1.0,Empty))){-- [23.1 ,32.2 ,1.0] -

Left(1, Left(“ali ′′, Left(15.23, Empty) ∈ List α ?
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Recursive Types

Lists

Polymorphic lists: a single definition defines lists of many
types.

List α = α × (List α) + {empty}
data List a lpha = Left ( a lpha ,List a lpha ) | Empty

x = Left (1, Left(2, Left(3,Empty))) {-- [1 ,2 ,3] list --}

y = Left ("ali",Left("ahmet",Empty)) {-- [" ali"," ahmet "] --

z = Left (23.1, Left (32.2, Left (1.0,Empty))){-- [23.1 ,32.2 ,1.0] -

Left(1, Left(“ali ′′, Left(15.23, Empty) ∈ List α ?
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Recursive Types

Lists

Polymorphic lists: a single definition defines lists of many
types.

List α = α × (List α) + {empty}
data List a lpha = Left ( a lpha ,List a lpha ) | Empty

x = Left (1, Left(2, Left(3,Empty))) {-- [1 ,2 ,3] list --}

y = Left ("ali",Left("ahmet",Empty)) {-- [" ali"," ahmet "] --

z = Left (23.1, Left (32.2, Left (1.0,Empty))){-- [23.1 ,32.2 ,1.0] -

Left(1, Left(“ali ′′, Left(15.23, Empty) ∈ List α ? No.
Most languages only permits homogeneous lists.
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Recursive Types

Lists

Haskell Lists

binary operator “:” for list construction:
data [alpha] = (alpha : [alpha]) | []
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Recursive Types

Lists

Haskell Lists

binary operator “:” for list construction:
data [alpha] = (alpha : [alpha]) | []

x = (1:(2:(3:[])))
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Recursive Types

Lists

Haskell Lists

binary operator “:” for list construction:
data [alpha] = (alpha : [alpha]) | []

x = (1:(2:(3:[])))

Syntactic sugar:
[1,2,3] ≡ (1:(2:(3:[])))

["ali"] ≡ ("ali":[])
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General Recursive Types

General Recursive Types

T = ...T ...
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General Recursive Types

T = ...T ...

Formula requires a minimal solution to be representable:
S = Int × S

Is it possible to write a single value? No minimum solution
here!
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General Recursive Types

T = ...T ...

Formula requires a minimal solution to be representable:
S = Int × S

Is it possible to write a single value? No minimum solution
here!

List example:
x = Left(1,Left(2,x))

x ∈ S?
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General Recursive Types

General Recursive Types

T = ...T ...

Formula requires a minimal solution to be representable:
S = Int × S

Is it possible to write a single value? No minimum solution
here!

List example:
x = Left(1,Left(2,x))

x ∈ S?
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Recursive Types

General Recursive Types

General Recursive Types

T = ...T ...

Formula requires a minimal solution to be representable:
S = Int × S

Is it possible to write a single value? No minimum solution
here!

List example:
x = Left(1,Left(2,x))

x ∈ S? Yes
can we process [1,2,1,2,1,2,...] value?

Some languages like Haskell lets user define such values. All
iterations go infinite. Useful in some domains though.
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Recursive Types

General Recursive Types

General Recursive Types

T = ...T ...

Formula requires a minimal solution to be representable:
S = Int × S

Is it possible to write a single value? No minimum solution
here!

List example:
x = Left(1,Left(2,x))

x ∈ S? Yes
can we process [1,2,1,2,1,2,...] value?

Some languages like Haskell lets user define such values. All
iterations go infinite. Useful in some domains though.

Most languages allow only a subset of S , the subset of finite
values.



Programming Languages/Values and Types

Recursive Types

General Recursive Types

Tree α = empty + node α × Treeα × Treeα

Tree α = {empty} ∪ {node(x , empty , empty) | x ∈ α}∪
{node(x , node(y , empty , empty), empty) | x , y ∈ α}∪
{node(x , empty , node(y , empty , empty)) | x , y ∈ α}∪
{node(x , node(y , empty , empty), node(z, empty , empty)) | x , y , z ∈ α} ∪ ...
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Recursive Types

General Recursive Types

Tree α = empty + node α × Treeα × Treeα

Tree α = {empty} ∪ {node(x , empty , empty) | x ∈ α}∪
{node(x , node(y , empty , empty), empty) | x , y ∈ α}∪
{node(x , empty , node(y , empty , empty)) | x , y ∈ α}∪
{node(x , node(y , empty , empty), node(z, empty , empty)) | x , y , z ∈ α} ∪ ...

C++ (pointers and template definition)

template <class Alpha >
struct Tree {

Alpha x;
Tree * l e f t ,* r i g h t ;

} r o o t ;
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Recursive Types

General Recursive Types

Tree α = empty + node α × Treeα × Treeα

Tree α = {empty} ∪ {node(x , empty , empty) | x ∈ α}∪
{node(x , node(y , empty , empty), empty) | x , y ∈ α}∪
{node(x , empty , node(y , empty , empty)) | x , y ∈ α}∪
{node(x , node(y , empty , empty), node(z, empty , empty)) | x , y , z ∈ α} ∪ ...

C++ (pointers and template definition)

template <class Alpha >
struct Tree {

Alpha x;
Tree * l e f t ,* r i g h t ;

} r o o t ;

Haskell

data Tree a lpha = Empty |

Node ( a lpha ,Tree a lpha , Tree a lpha )

x = Node (1,Node (2,Empty,Empty),Node(3,Empty,Empty))
y = Node(3,Empty,Empty)
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Recursive Types

Strings

Strings

Language design choice:

1 Primitive type (ML):
Language keeps an internal table of strings

Design choice affects the complexity and efficiency of:
concatenation, assignment, equality, lexical order,
decomposition
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Recursive Types

Strings

Strings

Language design choice:

1 Primitive type (ML):
Language keeps an internal table of strings

2 Character array (C, Pascal, ...)

Design choice affects the complexity and efficiency of:
concatenation, assignment, equality, lexical order,
decomposition
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Recursive Types

Strings

Strings

Language design choice:

1 Primitive type (ML):
Language keeps an internal table of strings

2 Character array (C, Pascal, ...)

3 Character list (Haskell, Prolog, Lisp)

Design choice affects the complexity and efficiency of:
concatenation, assignment, equality, lexical order,
decomposition
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Type Systems

Types are required to provide data processing, integrity
checking, efficiency, access controls. Type compatibility on
operators is essential.



Programming Languages/Values and Types

Type Systems

Type Systems

Types are required to provide data processing, integrity
checking, efficiency, access controls. Type compatibility on
operators is essential.

Simple bugs can be avoided at compile time.



Programming Languages/Values and Types

Type Systems

Type Systems

Types are required to provide data processing, integrity
checking, efficiency, access controls. Type compatibility on
operators is essential.

Simple bugs can be avoided at compile time.

Irrelevant operations:
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x=12; x[1]=6;

y=5; x.a = 4;
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When to do type checking? Latest time is before the
operation. Two options:
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Types are required to provide data processing, integrity
checking, efficiency, access controls. Type compatibility on
operators is essential.

Simple bugs can be avoided at compile time.

Irrelevant operations:
y=true * 12;

x=12; x[1]=6;

y=5; x.a = 4;

When to do type checking? Latest time is before the
operation. Two options:

1 Compile time → static type checking
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Type Systems

Type Systems

Types are required to provide data processing, integrity
checking, efficiency, access controls. Type compatibility on
operators is essential.

Simple bugs can be avoided at compile time.

Irrelevant operations:
y=true * 12;

x=12; x[1]=6;

y=5; x.a = 4;

When to do type checking? Latest time is before the
operation. Two options:

1 Compile time → static type checking
2 Run time → dynamic type checking
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Type Systems

Static Type Checking

Static Type Checking

Compile time type information is used to do type checking.
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Type Systems

Static Type Checking

Static Type Checking

Compile time type information is used to do type checking.

All incompatibilities are resolved at compile time. Variables
have a fixed time during their lifetime.

Most languages do static type checking

User defined constants, variable and function types:
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Static Type Checking

Compile time type information is used to do type checking.

All incompatibilities are resolved at compile time. Variables
have a fixed time during their lifetime.

Most languages do static type checking

User defined constants, variable and function types:

Strict type checking. User has to declare all types (C, C++,
Fortran,...)
Languages with type inference (Haskell, ML, Scheme...)

No type operations after compilation. All issues are resolved.
Direct machine code instructions.
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Dynamic Type Checking

Run-time type checking. No checking until the operation is to
be executed.

Interpreted languages like Lisp, Prolog, PHP, Perl, Python.

A hypothetical language:

int whichmonth( i n pu t ) {

if ( i s i n t e g e r ( i n pu t )) return i n pu t ;
else if ( i s s t r i n g ( i n pu t ))

switch( i n pu t ) {

case "January": return 1;

case "February": return 2;

...

case "December": return 12;}

}

...

r ead ( i n pu t ) /* user input at run time? */

ay=whichmonth( i n pu t )
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Dynamic Type Checking

Run time decision based on users choice is possible.

Has to carry type information along with variable at run time.

Type of a variable can change at run-time (depends on the
language).
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Static vs Dynamic Type Checking

Static type checking is faster. Dynamic type checking does
type checking before each operation at run time. Also uses
extra memory to keep run-time type information.

Static type checking is more restrictive meaning safer. Bugs
avoided at compile time, earlier is better.

Dynamic type checking is less restrictive meaning more
flexible. Operations working on dynamic run-time type
information can be defined.
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Type Equality

S
?≡ T How to decide?

Name Equivalence: Types should be defined at the same exact
place.
Structural Equivalence: Types should have same value set.
(mathematical set equality).

Most languages use name equivalence.

C example:

typedef struct Comp { double x, y;} Complex;
struct COMP { double x,y; };

struct Comp a;
Complex b;
struct COMP c;

/* ... */

a=b; /* Valid , equal types */

a=c; /* Compile error , incompatible types */
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Type Systems

Type Equality

Structural Equality

S ≡ T if and only if:

1 S and T are primitive types and S = T (same type),

2 if S = A × B, T = A′ × B ′, A ≡ A′, and B ≡ B ′,

3 if S = A + B, T = A′ + B ′, and (A ≡ A′ and B ≡ B ′) or
(A ≡ B ′ and B ≡ A′ ),

4 if S = A 7→ B, T = A′ 7→ B ′, A ≡ A′ and B ≡ B ′,

5 if S = P(A), T = P(A′), and A ≡ A′.

Otherwise S 6≡ T
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Type Systems

Type Equality

Harder to implement structural equality. Especially recursive
cases.

T = {nil} + A × T , T ′ = {nil} + A × T ′

T = {nil} + A × T ′ , T ′ = {nil} + A × T

struct Circle { double x,y,a;};
struct Square { double x,y,a;};
Two types have a semantical difference. User errors may need
less tolerance in such cases.

Automated type conversion is a different concept. Does not
necessarily conflicts with name equivalence.

enum Day {Mon, Tue, Wed, Thu, Fr i , Sat , Sun} x;
x=3;
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Type Completeness

First order values:

Assignment
Function parameter
Take part in compositions
Return value from a function

Most imperative languages (Pascal, Fortran) classify functions
as second order value. (C represents function names as
pointers)

Functions are first order values in most functional languages
like Haskell and Scheme .

Arrays, structures (records)?

Type completeness principle: First order values should take
part in all operations above, no arbitrary restrictions should
exist.
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C Types:
Primitive Array Struct Func.

Assignment
√ × √ ×

Function parameter
√ × √ ×

Function return
√ × √ ×

In compositions
√ √ √ ×

Haskell Types:
Primitive Array Struct Func.

Variable definition
√ √ √ √

Function parameter
√ √ √ √

Function return
√ √ √ √

In compositions
√ √ √ √

Pascal Types:
Primitive Array Struct. Func.

Assignment
√ √ √ ×

Function parameter
√ √ √ ×

Function return
√ × × ×

In compositions
√ √ √ ×
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Expressions

Program segments that gives a value when evaluated:

Literals

Variable and constant access

Aggregates

Variable references

Function calls

Conditional expressions

Iterative expressions (Haskell)
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Literals/Variable and Constant Access

Literals: Constants with same value with their notation
123, 0755, 0xa12, 12451233L, -123.342,

-1.23342e-2, ’c’, ’\021’, "ayse", True, False

Variable and constant access: User defined constants and
variables give their content when evaluated.
int x;

#define pi 3.1416

x=pi*r*r
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Aggregates

Used to compose composite values lexically.

x=(12,"ali",True) {-- 3 Tuple --}

y={name="ali", no=12} {-- record --}

f =\x -> x*x {-- function --}

l =[1,2,3,4] {-- recursive type , list --}

C only has aggregates at
definition. There is no aggregates in the executable expressions!

struct Person { char name[20], int no } p = {"Ali Cin", 332314

double d i z i [3][2] = {{0,1}, {1.2,4}, {12, 1.4}};

p={"Veli Cin" ,123412}; × /* not possible!*/



Programming Languages/Values and Types

Expressions

Variable References

Variable References

Variable access vs variable reference

value vs l-value

pointers are not references! You can use pointers as references
with special operators.

Some languages regard references like first order values (Java,
C++ partially)

Some languages distinguish the reference from the content of
the variable (Unix shells, ML)
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Function Calls

F (Gp1, Gp2, ...,Gpn)

Function name followed by actual parameter list. Function is
called, executed and the returned value is substituted in the
expression position.

Actual parameters: parameters send in the call

Formal parameters: parameter names used in function
definition

Operators can be considered as function calls. The difference
is the infix notation.

⊕(a, b) vs a ⊕ b

languages has built-in mechanisms for operators. Some
languages allow user defined operators (operator overloading):
C++, Haskell.
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Conditional Expressions

Conditional Expressions

Evaluate to different values based on a condition.

Haskell: if condition then exp1 else exp2 .
case value of p1 -> exp1 ; p2 -> exp2 ...

C: (condition )?exp1 :exp2 ;

if .. else in C is not conditional expression but
conditional statement. No value when evaluated!

x = (a>b)?a:b;
y = ((a>b)? s i n : cos )(x); /* Does it work? try yourself ... *
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Expressions

Conditional Expressions

Haskell:

x = if (a>b) then a else b
y = (if (a>b) then (+) else (*)) x y
data Day = Mon | Tue | Wed | Thu | F r i | Sat | Sun
conv e r t a = case a of

Left (x, r e s t ) -> x : ( conv e r t r e s t )
Empty -> []

daynumber g = case g of

Mon -> 1

Tue -> 2

...

Sun -> 7

case checks for a pattern and evaluate the RHS expression
with substituting variables according to pattern at LHS.
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Iterative Expressions

Expressions that do a group of operations on elements of a list
or data structure, and returns a value.

[ expr | variable <- list , condition ]

Similar to set notation in math:
{expr |var ∈ list, condition}

x=[1,2,3,4,5,6,7,8,9,10,11,12]
y=[ a*2 | a <- x ] {-- [2 ,4 ,6 ,8 ,...24 ] --}

z=[ a | a <- x, mod a 3 == 1 ] {-- [1 ,4 ,7 ,10] --}
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Value and type

Primitive types

Composite types

Recursive types

When to type check

How to type check

Expressions
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