
Programmin Languages/Variables and Storage

Programmin Languages/Variables and Storage

Onur Tolga Şehitoğlu

Computer Engineering

4 Mart 2007

Programmin Languages/Variables and Storage

Outline

1 Storage
Array Variables

2 Semantics of Assignment

3 Variable Lifetime
Global Lifetime
Local Lifetime
Heap Variable Lifetime
Dangling Reference and Garbage

Persistent Variable Lifetime
4 Commands

Assignment
Procedure Call
Block commands
Conditional commands
Iterative statements

5 Memory Representation
6 Summary

Programmin Languages/Variables and Storage

Storage

Storage

Functional language variables: math like, defined or solved.
Remains same afterwards.

Programmin Languages/Variables and Storage

Storage

Storage

Functional language variables: math like, defined or solved.
Remains same afterwards.

Imperative language variables: variable has a state and value.
It can be assigned to different values in same phrase.

Programmin Languages/Variables and Storage

Storage

Storage

Functional language variables: math like, defined or solved.
Remains same afterwards.

Imperative language variables: variable has a state and value.
It can be assigned to different values in same phrase.

Two basic operations a variable: inspect and update.

Programmin Languages/Variables and Storage

Storage

Computer memory can be considered as a collection of cells.

Cells are initially unallocated.

f();

void f() {
int x;

...

x=5;

...

return;

}

Programmin Languages/Variables and Storage

Storage

Computer memory can be considered as a collection of cells.

Cells are initially unallocated.

Then, allocated/undefined.
Ready to use but value
unknown.

x: ?

f();

void f() {
int x;

...

x=5;

...

return;

}

Programmin Languages/Variables and Storage

Storage

Computer memory can be considered as a collection of cells.

Cells are initially unallocated.

Then, allocated/undefined.
Ready to use but value
unknown.

Then, storable

x: 5

f();

void f() {
int x;

...

x=5;

...

return;

}

Programmin Languages/Variables and Storage

Storage

Computer memory can be considered as a collection of cells.

Cells are initially unallocated.

Then, allocated/undefined.
Ready to use but value
unknown.

Then, storable

After the including block
terminates, again unallocated

5

f();

void f() {
int x;

...

x=5;

...

return;

}

Programmin Languages/Variables and Storage

Storage

Total or Selective Update

Composite variables can be inspected and updated in total or
selectively

struct Complex { double x,y; } a, b;
...

a=b; // Total update

a.x=b.y*a.x; // Selective update

Primitive variables: single cell
Composite variables: nested cells

Programmin Languages/Variables and Storage

Storage

Array Variables

Array Variables

Different approaches exist in implementation of array variables:

1 Static arrays

2 Dynamic arrays

3 Flexible arrays

Programmin Languages/Variables and Storage

Storage

Array Variables

Static arrays

Array size is fixed at compile time to a constant value or
expression.

C example:

d e f i n e MAXELS 100

int a[10];
double x[MAXELS*10][20];

}

Programmin Languages/Variables and Storage

Storage

Array Variables

Dynamic arrays

Array size is defined when variable is allocated. Remains
constant afterwards.

Example: GCC extension (not ANSI!)

int f (int n) {

double a[n]; ...

}

Example: C++ with templates

template <class T> class Array {

T * con t en t ;
public:

Array (int s) { con t en t =new T[s]; }

~Array () { delete [] con t en t ; }

};

...

Array <int > a(10); Array <double > b(n);

Programmin Languages/Variables and Storage

Storage

Array Variables

Flexible arrays

Array size is completely variable. Arrays may expand or shrink
at run time. Script languages like Perl, PHP, Python

Perl example:

@a=(1,3,5); # array size: 3

print $#a , "\n"; # output: 2 (0..2)

$a [10] = 12; # array size 11 (intermediate elements un

$a [20] = 4; # array size 21

print $#a , "\n"; # output: 20 (0..20)

delete $a [20]; # last element erased , size is 11

print $#a , "\n"; # output: 10 (0..10)

C++ and object orient languages allow overload of []
operator to make flexible arrays possible. STL (Standard
Template Library) classes in C++ like vector, map are like
such flexible array implementations.

Programmin Languages/Variables and Storage

Semantics of Assignment

Semantic of assignment in composite variables

Assignment by Copy vs
Reference.

Programmin Languages/Variables and Storage

Semantics of Assignment

Semantic of assignment in composite variables

Assignment by Copy vs
Reference.

Copy: All content is copied into
the other variables storage.
Two copies with same values in
memory.

x

"ali"

55717

3.56

y

"veli"

123456

2.48

assignment by Copy:

x

"veli"

123456

2.48

y

"veli"

123456

2.48

Programmin Languages/Variables and Storage

Semantics of Assignment

Semantic of assignment in composite variables

Assignment by Copy vs
Reference.

Copy: All content is copied into
the other variables storage.
Two copies with same values in
memory.

Reference: Reference of variable
is copied to other variable. Two
variables share the same storage
and values.

x

"ali"

55717

3.56

y

"veli"

123456

2.48

assignment by Copy:

x

"veli"

123456

2.48

y

"veli"

123456

2.48

x

"ali"

55717

3.56

y

"veli"

123456

2.48

Assignment by reference:

x y

"veli"

123456

2.48

(previous value of x is lost)

Programmin Languages/Variables and Storage

Semantics of Assignment

Assignment semantics is defined by the language design

C structures follows copy semantics. Arrays cannot be
assigned. Pointers are used to implement reference semantics.
C++ objects are similar.

Java follows copy semantics for primitive types. All other
types (objects) are reference semantics.

Copy semantics is slower

Reference semantics cause problems from storage sharing (all
operations effect both variables). Deallocation of one makes
the other invalid.

Java provides copy semantic via a member function called
copy(). Java garbage collector avoids invalid values (in case
of deallocation)

Programmin Languages/Variables and Storage

Variable Lifetime

Variable Lifetime

Variable lifetime: The period between allocation of a variable
and deallocation of a variable.

4 kinds of variable lifetime.

1 Global lifetime (while program is running)
2 Local lifetime (while declaring block is active)
3 Heap lifetime (arbitrary)
4 Persistent lifetime (continues after program terminates)

Programmin Languages/Variables and Storage

Variable Lifetime

Global Lifetime

Global lifetime

Life of global variables start at program startup and finishes
when program terminates.

Programmin Languages/Variables and Storage

Variable Lifetime

Global Lifetime

Global lifetime

Life of global variables start at program startup and finishes
when program terminates.

In C, all variables not defined inside of a function (including
main()) are global variables and have global lifetime:
program started program exitted

lifetime of global variables

Programmin Languages/Variables and Storage

Variable Lifetime

Global Lifetime

Global lifetime

Life of global variables start at program startup and finishes
when program terminates.

In C, all variables not defined inside of a function (including
main()) are global variables and have global lifetime:
program started program exitted

lifetime of global variables

What are C static variables inside functions?

Programmin Languages/Variables and Storage

Variable Lifetime

Local Lifetime

Local lifetime

Lifetime of a local variable, a variable defined in a function or
statement block, is the time between the declaring block is
activated and the block finishes.

Programmin Languages/Variables and Storage

Variable Lifetime

Local Lifetime

Local lifetime

Lifetime of a local variable, a variable defined in a function or
statement block, is the time between the declaring block is
activated and the block finishes.

Formal parameters are local variables.

Programmin Languages/Variables and Storage

Variable Lifetime

Local Lifetime

Local lifetime

Lifetime of a local variable, a variable defined in a function or
statement block, is the time between the declaring block is
activated and the block finishes.

Formal parameters are local variables.

Multiple instances of same local variable may alive at the
same time in recursive functions.

Programmin Languages/Variables and Storage

Variable Lifetime

Local Lifetime

Local lifetime

Lifetime of a local variable, a variable defined in a function or
statement block, is the time between the declaring block is
activated and the block finishes.

Formal parameters are local variables.

Multiple instances of same local variable may alive at the
same time in recursive functions.

start main() f() g() g() f() h() h() h() h() main() end

global
main() local

f() local h() local

g() local h() local

Programmin Languages/Variables and Storage

Variable Lifetime

Local Lifetime

double x;
int h(int n) {

int a;
if (n<1) return 1

else return h(n-1);
}

void g() {

int x;
int b;

...

}

int f () {

double z;
...

g();
...

}

int main() {

double k;
f ();
...

h(1);
...;

return 0;

}

start

main()

f()

g()

g()

f()

h()

h()

h()

h()

main()

end

x k

z x,b

n,a n,a

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

Heap Variable Lifetime

Heap variables: Allocation and deallocation is not automatic
but explicitly requested by programmer via function calls.

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

Heap Variable Lifetime

Heap variables: Allocation and deallocation is not automatic
but explicitly requested by programmer via function calls.

C: malloc(), free(), C++: new, delete.

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

Heap Variable Lifetime

Heap variables: Allocation and deallocation is not automatic
but explicitly requested by programmer via function calls.

C: malloc(), free(), C++: new, delete.

Heap variables are accessed via pointers. Some languages use
references
double *p;

p=malloc(sizeof(double));

*p=3.4; ...

free(p);

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

Heap Variable Lifetime

Heap variables: Allocation and deallocation is not automatic
but explicitly requested by programmer via function calls.

C: malloc(), free(), C++: new, delete.

Heap variables are accessed via pointers. Some languages use
references
double *p;

p=malloc(sizeof(double));

*p=3.4; ...

free(p);

p and *p are different variables p has pointer type and usually
a local or global lifetime, *p is heap variable.

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

Heap Variable Lifetime

Heap variables: Allocation and deallocation is not automatic
but explicitly requested by programmer via function calls.

C: malloc(), free(), C++: new, delete.

Heap variables are accessed via pointers. Some languages use
references
double *p;

p=malloc(sizeof(double));

*p=3.4; ...

free(p);

p and *p are different variables p has pointer type and usually
a local or global lifetime, *p is heap variable.

heap variable lifetime can start or end at anytime.

Programmin Languages/Variables and Storage

Variable Lifetime

Heap Variable Lifetime

double *p;
int h() { ...

}

void g() { ...

p=mal l oc (sizeof(double));
}

int f () { ...

g(); ...

}

int main() { ...

f (); ...

h(); ...;

f r e e (p); ...

}

start main() f() g() g() f() h() h() main() end

global, p

heap variable, *p

Programmin Languages/Variables and Storage

Variable Lifetime

Dangling Reference and Garbage

Dangling Reference

dangling reference: trying to access a variable whose lifetime is

ended and already deallocated.

char * f () {

char a[]="ali";
char *p, *q;

return a;
p=mal l oc (10); }

q=p;

... char *p;
f r e e (q); p= f ();
p r i n t f ("%s",p); p r i n t f ("%s",p);

both p’s are deallocated or ended lifetime variable, thus dangling

reference

sometimes operating system tolerates dangling references.

Sometimes generates run-time erros like “protection fault”,

“segmentation fault” are generated.

Programmin Languages/Variables and Storage

Variable Lifetime

Dangling Reference and Garbage

Garbage variables

garbage variables: The variables with lifetime still continue
but there is no way to access.

void f () {

char *p;
char *p, *q; p=mal l oc (10); ...

... return

p=mal l oc (10); }

p=q;

... f ();

When the pointer value is lost or lifetime of the pointer is
over, heap variable is unaccessible. (*p in examples)

Programmin Languages/Variables and Storage

Variable Lifetime

Dangling Reference and Garbage

Garbage collection

A solution to dangling reference and garbage problem: PL
does management of heap variable deallocation automatically.
This is called garbage collection. (Java, Lisp, ML, Haskell,
most functional languages)

no call like free() or delete exists.

Count of all possible references is kept for each heap variable.

When reference count gets to 0 garbage collector deallocates
the heap variable.

Garbage collector usually works in a separate thread when
CPU is idle.

Another but too restrictive solution: Reference cannot be
assigned to a longer lifetime variable. local variable references
cannot be assigned to global reference/pointer.

Programmin Languages/Variables and Storage

Variable Lifetime

Persistent Variable Lifetime

Persistent variable lifetime

Variables with lifetime continues after program terminates:
file, database, web service object,...

Stored in secondary storage or external process.

Only a few experimental language has transparent persistence.
Persistence achieved via IO instructions
C files: fopen(), fseek(), fread(), fwrite()

In object oriented languages; serialization: Converting object
into a binary image that can be written on disk or sent to
network.

This way objects snapshot can be taken, saved, restored and
object continue from where it remains.

Programmin Languages/Variables and Storage

Commands

Commands

Expression: program segment with a value. Statement: program
segment without a value but with purpose of altering the state.
Input, output, variable assignment, iteration...

1 Assignment

2 Procedure call

3 Block commands

4 Conditional commands

5 Iterative commands

Programmin Languages/Variables and Storage

Commands

Assignment

Assignment

C: “Var = Expr;”, Pascal “Var := Expr;”.

Evaluates RHS expression and sets the value of the variable at
RHS

x = x + 1 . LHS x is a variable reference (l-value), RHS is
the value

multiple assignment: x=y=z=0;

parallel assignment: (Perl, PHP) ($a,$b) = ($b, $a);

($name, $surname, $no) =

("Onur","Şehitoğlu",55717);

Assignment: “reference aggregate” → “value aggregate”

assignment with operator: x += 3; x *= 2;

Programmin Languages/Variables and Storage

Commands

Procedure Call

Procedure call

Procedure: user defined commands. Pascal: procedure, C:
function returning void

void functname (param1 , param2 , ..., paramn)

Usage is similar to functions but call is in a statement position
(on a separate line of program)

Programmin Languages/Variables and Storage

Commands

Block commands

Block commands

Composition of a block from multiple statements

Sequential commands: { C1 ; C2; ... ; Cn }
A command is executed, after it finishes the next command is
executed,...

Commands enclosed in a block behaves like single
command:“if” blocks, loop bodies,...

Collateral commands: { C1, C2, ... , Cn } (not C ‘,’)!

Commands can be executed in any order.

The order of execution is non-deterministic. Compiler or
optimizer can choose any order. If commands are
independent, effectively deterministic:
‘y=3 , x=x+1 ;’ vs ‘x=3, x=x+1 ;’

Can be executed in parallel.

Programmin Languages/Variables and Storage

Commands

Block commands

Concurrent commands: concurrent paradigm languages:
{ C1 | C2 | ... | Cn }

All commands start concurrently in parallel. Block finishes
when the last active command finishes.

Real parallelism in multi-core/multi-processor machines.

Transparently handled by only a few languages. Thread
libraries required in languages like Java, C, C++.

void p roduce r (...) {....}

void c o l l e c t g a r b a g e (...) {....}

void consumer (...) {....}

int main() {

...

p t h r e a d c r e a t e (t i d1 ,NULL, producer ,NULL);
p t h r e a d c r e a t e (t i d2 ,NULL, c o l l e c t g a r b a g e ,NULL);
p t h r e a d c r e a t e (t i d3 ,NULL, consumer ,NULL);
...

}

Programmin Languages/Variables and Storage

Commands

Conditional commands

Conditional commands

Commands to choose between alternative commands based on
a condition

in C : if (cond) C1 else C2 ;

switch (value) { case L1 : C1 ; case L2 : C2 ; ...}

if commands can be nested for multi-conditioned selection.

switch like commands chooses statements based on a value

?

C1 ?

C2 ?

C3 C4

Val

C1 C2 C3 C4

L1

L2 L3

L4

Programmin Languages/Variables and Storage

Commands

Conditional commands

non-deterministic conditionals: conditions are evaluated in
collaterally and commands are executed if condition holds.

hyphotetically:
if (cond1) C1 or if (cond2) C2 or if (cond3) C3 ;

switch (val) {

case L1: C1 | case L2: C2 | case L3: C3 }

Tests can run concurrently

|

? ? ? ?

C1 C2 C3 C4

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Loop classification: minimum number of iteration: 0 or 1.

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Loop classification: minimum number of iteration: 0 or 1.

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Loop classification: minimum number of iteration: 0 or 1.
C: while (...) { ... }

?

IC

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Loop classification: minimum number of iteration: 0 or 1.
C: while (...) { ... }

?

IC

C: do {...} while (...);

IC

?

Programmin Languages/Variables and Storage

Commands

Iterative statements

Iterative statements

Repeating same command or command block multiple times
possibly with different data or state. Loop commands.

Loop classification: minimum number of iteration: 0 or 1.
C: while (...) { ... }

?

IC

C: do {...} while (...);

IC

?

Another classification: definite vs indefinite iteration

Programmin Languages/Variables and Storage

Commands

Iterative statements

Definite vs indefinite loops

Indefinite iteration: Number of iterations of the loop is not
known until loop finishes

C loops are indefinite iteration loops.

Definite iteration: Number of iterations is fixed when loop
started.

Pascal for loop is a definite iteration loop.
for i:= k to m do begin end; has (m − k + 1)

iterations.
Pascal forbids update of the loop index variable.

List and set based iterations: PHP, Perl, Python, Shell

$ c o l o r s =array(’yellow ’,’blue ’,’green ’,’red’,’white ’);
foreach ($ c o l o r s as $ i) {

print $ i ," is a color","\n";
}

Programmin Languages/Variables and Storage

Memory Representation

Memory Representation

Global variables are kept in fixed
region of data segment in memory
They are directly accessible

Heap variables are kept in dynamic
region of data segment in memory
In a data structure. A memory
manager required.

Local variables are usually kept in
run-time stack (Why?)

Programmin Languages/Variables and Storage

Memory Representation

Memory Representation

Global variables are kept in fixed
region of data segment in memory
They are directly accessible

Heap variables are kept in dynamic
region of data segment in memory
In a data structure. A memory
manager required.

Local variables are usually kept in
run-time stack (Why?)
recursion, each call needs its own
set of local variables

Programmin Languages/Variables and Storage

Summary

Summary

Variables with storage

Variable update

Lifetime: global, local, heap, persistent

Commands

	Storage
	Array Variables

	Semantics of Assignment
	Variable Lifetime
	Global Lifetime
	Local Lifetime
	Heap Variable Lifetime
	Dangling Reference and Garbage
	Persistent Variable Lifetime

	Commands
	Assignment
	Procedure Call
	Block commands
	Conditional commands
	Iterative statements

	Memory Representation
	Summary

