
Programming Languages:Logic Paradigm

Programming Languages:
Logic Paradigm

Onur Tolga Şehitoğlu

Computer Engineering,METU

8 May 2008

Programming Languages:Logic Paradigm

Outline

1 Logic Programming Paradigm

2 Prolog basics

3 Prolog Terms

4 Unification

5 Declarations

6 Procedural Interpretation

Programming Languages:Logic Paradigm

Logic Programming Paradigm

Logic Programming Paradigm

Based on logic and declarative programming

60’s and early 70’s

Prolog (Programming in logic, 1972) is the most well known
representative of the paradigm.

Prolog is based on Horn clauses and SLD resolution

Mostly developed in fifth generation computer systems project

Specially designed for theorem proof and artificial intelligence
but allows general purpose computation.

Some other languages in paradigm: ALF, Frill, Gödel,
Mercury, Oz, Ciao, λProlog, datalog, and CLP languages

Programming Languages:Logic Paradigm

Logic Programming Paradigm

Constraint Logic Programming

Clause: disjunction of universally quantified literals,

∀(L1 ∨ L2 ∨ ... ∨ Ln)

A logic program clause is a clause with exactly one positive
literal

∀(A ∨ ¬A1 ∨ ¬A2... ∨ ¬An) ≡
∀(A ⇐ A1 ∧ A2... ∧ An)

A goal clause: no positive literal

∀(¬A1 ∨ ¬A2... ∨ ¬An)

Proof by refutation, try to unsatisfy the clauses with a goal
clause G . Find ∃(G).

Linear resolution for definite programs with constraints and
selected atom.

Programming Languages:Logic Paradigm

Logic Programming Paradigm

What does Prolog look like?

f a t h e r (ahmet , ayse).
f a t h e r (hasan ,ahmet).
mother(fatma , ayse).
mother(ha t i c e , fatma).
pa r en t (X,Y) :- f a t h e r (X,Y).
pa r en t (X,Y) :- mother(X,Y).
g randpa r en t (X,Y) :- pa r en t (X,Z), pa r en t (Z,Y).

Programming Languages:Logic Paradigm

Prolog basics

CLP on first order terms. (Horn clauses).

Unification. Bidirectional.

Backtracking. Proof search based on trial of all matching
clauses.

Programming Languages:Logic Paradigm

Prolog Terms

Prolog Terms

Atoms:

1 Strings with starting with a small letter and consist of
[a-zA-Z 0-9]*

a aDAM a1 2

2 Strings consisting of only punctuation
* *** .+. .<.>.

3 Any string enclosed in single quotes (like an arbitrary string)
’ADAM’ ’Onur Sehitoglu’’2 * 4 < 6’

Numbers
1234 12.32 12.23e-10

Programming Languages:Logic Paradigm

Prolog Terms

Variables:

1 Strings with starting with a capital letter or and consist of
[a-zA-Z 0-9]*

Adam adam A093

2 is the universal match symbol. Not variable

Structures:

starts with an atom head
has one or more arguments (any term) enclosed in paranthesis,
separated by comma
structure head cannot be a variable or anything other than
atom.
a(b) a(b,c) a(b,c,d) ++(12) +(*) *(1,a(b)) ’hello world’(1,2)√
X(b) 4(b,c) a() ++() (3) ×
some structures defined as infix:
+(1,2) ≡ 1+2 , :-(a,b,c,d) ≡ a :- b,c,d

is(X,+(Y,1)) ≡ X is X + 1

Programming Languages:Logic Paradigm

Prolog Terms

Syntactic Sugars

Prolog interpreter automatically maps some easy to read
syntax into its actual structure.

List: [a,b,c] ≡ .(a,.(b,.(c,[])))

Head and Tail: [H|T] ≡ .(H,T)

String: "ABC" ≡ [65,66,67] (ascii integer values)

use display (Term). to see actual structure of the term.

Programming Languages:Logic Paradigm

Unification

Unification

Bi-directional (both actual and formal argument can be
instantiated)

1 if S and T are atoms or number, unification successfull only if
S = T

2 if S is a variable, S is instantiated as T , if it is compatible
with current constraint store (S is instantiated to another
term, they are unified)

3 if S and T are structures, successfull if:

head of S = head of T
they have same arity
unification of all corressponding terms are successfull

Programming Languages:Logic Paradigm

Unification

A: list of atoms, N : list of numbers, V: list of variables,
S: list of structures, P current constraint store
s ∈ S, arity(s): number of arguments of structure,
s ∈ S, head(s): head atom of the structure,
s ∈ S, argi (s): i th argument term of the structure,
p � P: p is consistent with current constraint store.

S ≡ T ;P =

(S ,T ∈ A ∨ S ,T ∈ N) ∧ S = T → true;P
S ∈ V ∧ S ≡ T |= P → true; S ≡ T ∧ P
T ∈ V ∧ S ≡ T |= P → true; S ≡ T ∧ P
S ,T ∈ S ∧ head(S) = head(T) ∧ arity(S) = arity(T) →

∀i , argi (S) ≡ argi (T);P

Programming Languages:Logic Paradigm

Unification

Unification Examples

X = a → √
with X = a

a(X,3) = a(X,3,2) → ×
a(X,3) = b(X,3) → ×
a(X,3) = a(3,X) → √

with X = 3

a(X,3) = a(4,X) → ×
a(X,b(c,d(e,f))) = a(b(c,Y),X) → X = b(c, d(e, f)), Y = d(e, f)

Programming Languages:Logic Paradigm

Declarations

Declarations

Two types of clauses:

p1(arg1, arg2, ...) :- p2(args,...) , p3(args,...) .

means if p2 and p3 true, then p1 is true. There can be
arbitrary number of (conjunction of) predicates at right hand
side.

p(arg1, arg2, ...) .

sometimes called a fact. It is equivalent to:
p(arg1, arg2, ...) :- true.

p(args) :- q(args) ; s(args) .

Is disjunction of predicates. q or s implies p. Equivalent to:
p(args) :- q(args).

p(args) :- s(args).

A prolog program is just a group of such clauses.

Programming Languages:Logic Paradigm

Declarations

List Examples

% list membership

memb(X, [X|Rest]) .

memb(X, [|Rest]) :- memb(X, Rest).

% concatenation

conc ([],L,L).
conc ([X|R] , L , [X|R and L]) :- conc(R, L, R and L).

% second list starts with first list

p r e f i x o f ([],).

p r e f i x o f ([X|Rx], [X|Ry]) :- p r e f i x o f (Rx, Ry).

% second list contains first list

s u b l i s t (L1, L2) :- p r e f i x o f (L1, L2).
s u b l i s t (L, [|R]) :- s u b l i s t (L, R).

Programming Languages:Logic Paradigm

Procedural Interpretation

Procedural Interpretation

For goal clause all matching head clauses (LHS of clauses) are
kept as backtracking points (like a junction in maze search)

Starts from first match.

To prove head predicate, RHS predicates need to be proved
recursively.

If all RHS predicates are proven, head predicate is proven.

When fails, prolog goes back to last backtracking point and
tries next choice.

When no backtracking point is left, goal clause fails.

All predicate matches go trough unification so goal clause
variables can be instantiated.

Programming Languages:Logic Paradigm

Procedural Interpretation

Arithmetics and operators

X = 3+1 is not an arithmetic expression!

operators (is) force arithmetic expressions to be evaluated

all variables of the operations needs to be instantiated
12 is 3+X does not work!

Comparison operators force LHS and RHS to be evaluated:
X>Y, X<Y, X>=Y, X =< Y, X =:= Y, X == Y

is operator forces RHS to be evaluated: X is Y+3*Y Y needs to
have a numerical value when search hits this expression.

note that X is X+1 is never successful in Prolog. Variables are
instantiated once.

Programming Languages:Logic Paradigm

Procedural Interpretation

Greatest Common Divisor (Euler’s)

gcd(m, n) = gcd(n,m − n) if n < m

gcd(m, n) = gcd(n,m) if m < n

gcd(X,X,X) .

gcd(X,Y,D) :- X < Y, Y1 is Y-X, gcd(X,Y1,D).
gcd(X,Y,D) :- Y < X, gcd(Y, X, D).

	Logic Programming Paradigm
	Prolog basics
	Prolog Terms
	Unification
	Declarations
	Procedural Interpretation

