
METU NCC,

CNG 242, Spring 2010,
Homework 5
Due 25th May 2010

In this homework you will implement some utility classes for the Chess game. The game engine
interacts with an abstract class to make players move. Each kind of chess piece inherits this abstract
class and implements virtual member functions and specify if the given move is valid or not.

1 Class Diagram

Piece

Color

row, column

static board

#canmove()

#draw()

+getcolor()

+move()

+getpiece()

+drawboard

Pawn

#canmove()

#draw()

Knight

#canmove()

#draw()

Bishop

#canmove()

#draw()

Rook

#canmove()

#draw()

Queen

#canmove()

#draw()

King

#canmove()

#draw()

Board state is defined as a static member variable to the Piece class and each constructed piece
has to be implemented on this board. When a piece captures another, the capture piece is deleted
from the board. All moves are done through Piece class member function move(). Those moves are
checked against the board and updated on the board if valid. All pieces are heap variables created
with new.

2 Header File

You are given the following header file hw5.h:

#include <iostream >

using namespace s t d ;

class Exc ep t i o n {

const char *mess;

public:

Exc ep t i o n (const char *m) { mess = m ; }

void ou tpu t () { c e r r << mess << ’\n’;}

};

// A piece with invalid color value is tried to be constructed

class I n v a l i d C o l o r : public Exc ep t i o n {

public:

I n v a l i d C o l o r (): Exc ep t i o n ("Invalid piece color") {}

};

// A move outside of the board is attempted

class OutofBoard : public Exc ep t i o n {

public:

OutofBoard (): Exc ep t i o n ("Out of the Board") {}

};

// A piece is tried to be placed on an already occupied cell

class Occup ied : public Exc ep t i o n {

public:

Occup ied (): Exc ep t i o n ("Location is occupied") {}

};

// An invalid move is targetted for the piece kind

class CannotMove: public Exc ep t i o n {

public:

CannotMove(): Exc ep t i o n ("Cannot move there") {}

};

// A piece is expected on the cell but , the cell is empty

class EmptyCe l l : public Exc ep t i o n {

public:

EmptyCe l l (): Exc ep t i o n ("The cell is empty , no piece there") {}

};

enum Co l o r { BLACK, WHITE};

enum Column {A, B, C, D, E, F, G, H, OUT};

const char ctoname []="ABCDEFGH "; // convert Column type to character

// for printing. ctoname[A] is ’A’

const char co l toname [][10]={"BLACK","WHITE"}; // convert Color type to color

// name. coltoname[BLACK] is "BLACK"

// macro to convert character input into Column name nametoc(’a ’) is A ,

// nametoc(’H ’) is H.

#define nametoc(a) ((’a’<= a && a <= ’h’)?(Column) (a-’a’):\

(’A’ <= a && a <= ’H’)?(Column) (a - ’A’):OUT)

// Base abstract class.

class P i e c e {

protected:

static P i e c e * board [9][OUT]; // board is a class member variable

Co l o r c o l o r ; // BLACK or WHITE

Column x; // A to H

int y; // 1 to 8. 8 is top , 1 is bottom

// each piece kind (Pawn , Knight , Bishop , Rook , Queen , King) decides on its own f

virtual int canmove(Column , int) const = 0;

// each pice returns a string denoting itself (P, N, B, R, Q, K)

virtual const char * draw () const = 0;

public:

// throws OutofBoard , Occupied

P i e c e (Co l o r c l r , Column clmn , int row);

Co l o r g e t c o l o r () const { return c o l o r ; }

// throws OutofBoard , CannotMove

void move(Column clmn , int row);

// throws EmptyCell

static P i e c e * g e t p i e c e (Column clmn , int row);

// draw the curent state of the board , uses draw functions from pieces

static void drawboard () {

const char empty []=

"| | | | | | | | |\n";

const char l i n e []=

"+-------+-------+-------+-------+-------+-------+-------+-------+\n";

cout << l i n e << empty ;

for (int r = 8; r >0 ; r --) {

for (int c = A ; c <= H ; ++ c)

if (board [r][c] == NULL)

cout << "| ";

else cout << "| " << board [r][c]->draw ()

<< " ";

cout << "|\n" << empty << l i n e ;

2

if (r > 1) cout << empty;

}

}

};

// initialize cells to be empty

P i e c e * P i e c e :: board [9][OUT]={

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL},

{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL}};

// create a piece depending on the name given in first argument

// pawn , knight , bishop , rook , queen and king

// returns NULL if no such piece is defined

extern P i e c e * c r e a t e (const char * piecename , Co l o r c l r , Column clmn , int row);

3 Implementation

You are asked:

1. to implement unimplemented member functions of Piece class in file hw5.cpp

2. to define all classes corressponding to the actual chess pieces derived from abstract class Piece

and create() function in file chess.cpp

The functions to implement in hw5.cpp and their meanings are given as:

Piece::Piece(Color, Column, int)

Constructs a new piece on the board. Make all necessary controls before placing the piece
on the board, makes sure that the requested location is on the board and it is not occupied.
Then updates the board member variable to contain pointer to the constructed object. All
derived classes have constructors calling this constructor properly.

void Piece::move(Column, int)

For any piece, it tries to make the move. It make couple of checks, make sure that the
position requested is on the board and not occupied by a piece with same color. It also asks
the derived class if it can move this location by calling canmove() function. When move is
valid, it makes the move, if there is an opponnent piece, it captures the piece (it is deleted).

In case a piece is captured this function outputs a message like:
captured: * P * at B7

static Piece * Piece::getpiece(Column, int)

Returns the pointer of the piece in the given position. If position is empty, it raises the
exception EmptyCell

The functions to implement in chess.cpp and their meanings are given as:

int canmove(Column, int)

It is implemented for all derived classes specifically to test if the move from pieces current
location to given position is possible for the piece.

const char * draw() const

It is implemented for all derived classes specifically to return the corressponding string for
the piece. The string from the following table is returned:

3

Piece \ Color BLACK WHITE

Pawn * P * . P .

Knight * N * . N .

Bishop * B * . B .

Rook * R * . R .

Queen * Q * . Q .

King * K * . K .

Note that drawboard() function uses this function.

Constructors
For each of the derived classes, the corressponding class constructor should be implemented.
The parameters are passed to Piece constructor.

Player *create(const char *, Column, int)

It is a not object oriented function. Implemented in global scope. It is in the chess.cpp and
has access to all derived piece classes. So it can call new for them and return their pointers.
The first parameter is the name of the class as a string, one of:
"pawn", "knight", "bishop", "rook", "queen", "king".
If any other string is specified, NULL is returned.

4 Chess Rules

In order to implement canmove() you need to know the rules of the game. You can find it on web
page:
http://en.wikipedia.org/wiki/Chess_rules#Movement

Here are couple of reminders and simplifications:

• Do not implement Castling (Rok in Turkish) move switching King and the Rook.

• Do not implement Pawn promotion

• Do not implement Mate situation, allow moves of the King to a threatened location.

• Do not implement En passant capture of a Pawn by another Pawn.

• Implement all other moves of the Pawn, diagonal move if an opponent is to be captured,
initial two step move.

• Note that you should check intermediate cells for being empty when pieces other than Knight
is moving.

• move() should already check if move is outside of the board and if the move is already occupied
by a same color piece. So you don’t have to test them again inside of canmove().

5 Main File

You are given the following file hw5main.cpp:

#include <iostream >

using namespace s t d ;

#include "hw5.h"

int main () {

// place 16 pawns

for (int c = A ; c <= H ; ++ c) {

c r e a t e ("pawn", BLACK, (Column) c , 7);

c r e a t e ("pawn", WHITE, (Column) c , 2);

}

// white pieces

c r e a t e ("rook", WHITE, A, 1);

c r e a t e ("knight", WHITE, B, 1);

c r e a t e ("bishop", WHITE, C, 1);

c r e a t e ("queen", WHITE, D, 1);

4

http://en.wikipedia.org/wiki/Chess_rules#Movement

c r e a t e ("king", WHITE, E, 1);

c r e a t e ("bishop", WHITE, F, 1);

c r e a t e ("knight", WHITE, G, 1);

c r e a t e ("rook", WHITE, H, 1);

// black pieces

c r e a t e ("rook", BLACK, A, 8);

c r e a t e ("knight", BLACK, B, 8);

c r e a t e ("bishop", BLACK, C, 8);

c r e a t e ("king", BLACK, D, 8);

c r e a t e ("queen", BLACK, E, 8);

c r e a t e ("bishop", BLACK, F, 8);

c r e a t e ("knight", BLACK, G, 8);

c r e a t e ("rook", BLACK, H, 8);

// white starts

Co l o r t u r n = WHITE ;

P i e c e :: drawboard ();

while (1) {

char sc , ec ;

int s r , e r ;

cout << "Turn: " << co l toname [t u r n] << ’\n’;

// input start pos and end pos as "D7 E5"

c i n >> ws >> s c >> s r ;

c i n >> ws >> ec >> e r ;

try {

P i e c e *p;

// ask the piece on start position

// if no piece exist on pos EmptyCell

p = P i e c e :: g e t p i e c e (nametoc(s c), s r);

// if piece with the wrong color leave iteration

if (p-> g e t c o l o r () != t u r n) {

cout << "not turn of that player\n";

continue;

}

// move the piece on start location

p->move(nametoc(ec), e r);

P i e c e :: drawboard ();

// switch turns

t u r n = (Co l o r) (! (int) t u r n);

} catch (Exc ep t i o n & e) {

e. ou tpu t (); // output exception message

}

}

}

This code interacts with the user and makes all moves given on input and executes them through
Piece member functions and create()

6 Submission

Put two files hw5.cpp and chess.cpp in a .zip file and submit. Note that your code should be
compiled separately with the hw5main.cpp specified above. hw5main.cpp should not include any
source from chess.cpp. You can download given sources from the web page.

5

	Class Diagram
	Header File
	Implementation
	Chess Rules
	Main File
	Submission

