Programming Languages:Control Flow

Programming Languages:

Control Flow

Onur Tolga Sehitoglu

Computer Engineering, METU

3 April 2008

Programming Languages:Control Flow

Control Flow

Jumps

Escapes

Exceptions

Programming Languages:Control Flow
L Control Flow

Control Flow

m Usual control flow: a command followed by the other.
Executed in sequence. single entrance - single exit

m Commands to change control flow and transfer execution to
another point: sequencers

m Jumps
m Escapes
m Exceptions

Programming Languages:Control Flow
L Jumps

Jumps

m Jumps transfer control to a point in the code. The destination
is marked with labels

m When jumps to arbitrary positions are possible:

1: x++;
if (x>10) goto |L2;
Jt+;
for (i=0;i<j;jH+) {
X=X*2;
L2: if (x>1000)| goto L3;
else goto L1;
¥

L3: printf("out\n");

A

m Called spaghetti coding

Programming Languages:Control Flow
LJum ps

m Unrestricted jumps = spaghetti coding.
m Dream of a PL where labels are first order values. ©
m Further problems. Which jumps have problems?:

L1:
goto L2; (@)
for (i=0;i<10;i++) {
int x=t;
L2:
goto L1; @
goto L2: ®
}

m Lifetime and values of local variables? Values of index
variables?

m C: Labels are local to enclosing block. No jumps allowed into
the block. Newer languages avoid jumps.

m Single entrance multiple exit is still desirable.— escapes

Programming Languages:Control Flow

L Escapes

Escapes

m Restricted jumps to out of textually enclosing block(s)
m Depending on which enclosing block to jump out of:
m loop: break sequencer.
m loops: exit sequencer.
m function: return sequencer.
m program: halt sequencer.

Programming Languages:Control Flow

L Escapes

m break sequencer in C, C++, Java terminates the innermost
enclosing loop block.
m continue in C, C++ stays in the same block but ends current
iteration.
m exit sequencer in Ada or labeled break in Java can terminate
multiple levels of blocks by specifying labels. Java code:
L1: for (i=0;i<10;i++) {
for (j=i;j<ij;j++) {
if (...) break;

else if (...) continue;
else if (...) break L1;
else if (...) continue L1;
S+=i%*];

Programming Languages:Control Flow

L Escapes

m return sequencer exist in most languages for terminating the
innermost function block.

m halt sequencer either provided by operating system or PL
terminates the program.

m Consider jump inside of a block or jump out of a block for the
function case:
int f(int n) {

int a;

L1: if (n<0) goto L2; (@)
else if (n=1) return 1;
else return f(n-1)*n;

}
int main() {
1.‘.(.12);
L2:
goto L1: @

}

Programming Languages:Control Flow

L Escapes

Jump out of a function block, jump inside of a function block

m Activation record, run-time stack? Possible only for one
direction if stack position can be recovered.

Non-local jumps

unexpected error occuring inside of many levels of recursion.
Jump to the outer-most related caller function. Exceptions

Programming Languages:Control Flow

L Exceptions

Exceptions

m Controlled jumps out of multiple levels of function calls to an
outer control point (handler or catch)

m C does not have exceptions but non-local jumps possible via
setjmp (), longjmp() library calls.

m C++ and Java: try {...} catch(...) {...}

m Each try-catch block introduces a non-local jump point.
try block is executed and whenever a throw ezpr command
is called in any functions called (even indirectly) inside try
block execution jumps to the catch() part.

m try-catch blocks can be nested. Execution jumps to closes
catch block with a matching type in the parameters with the
thrown expression.

Programming Languages:Control Flow

LE><ceptions

m Conventional error handling. Propagate errors with return
values.

int searchopen (char *f) {
error occurs here
return -5;
R
int openparse(char *f) {
if ((r = searchopen(f))<0)
return r;
else

}
int main() {
if ((rv=openparse("file.txt"))<0) {
handle error here

Programming Languages:Control Flow

LE><ceptions

m Error handling with try-catch. (based on run-time stack)

enum Exception { NOTFOUND, ..., PERMS};
void searchopen (char *f) {
error occurs here
throw PERMS;
oy
void openparse (char *f) {
searchopen (f);

}
int main() {
try {...
openparse("file.txt")|;

} catch(Exception e) {{
handle error here

}

Programming Languages:Control Flow
LE><ceptions

Nested exceptions are handled based on types. C++:

int main() {... try { Cl; £() ; C2 } catch (double a) {...}}

void £f(O) {...; try {...; gO ; ... } catch (int a) { ..|} }
. - A

void gO) {...; thr(l); 4; ... ; throT 1.5; ...}

In case no handlers found a run time error generated. Program
halts.

	Control Flow
	Jumps
	Escapes
	Exceptions

