Programming Languages:OO Paradigm, Polymorhism and Class Members

Programming Languages:

OO Paradigm, Polymorhism and Class Members

Onur Tolga Sehitoglu
Computer Engineering, METU

1 May 2009

Programming Languages:OO Paradigm, Polymorhism and Class Members

Outline

Polymorphism

Abstract Classes

Programming Languages:OO Paradigm, Polymorhism and Class Members

L Polymorphism

Polymorphism

m Inheritance — inclusion polymorphism
m Binding is still static, at compile time
m Pointers of derived classes are converted to superclass types

class A { int x;

public: void get() { cout << ’A::get()’;}
};

class B : public A { int y;

public: void get() { cout << ’B::get()’;}
}

A a, *p;

B b;

p=&a; p->get();
p=&b; p->get();

Programming Languages:OO Paradigm, Polymorhism and Class Members

L Polymorphism

Late Binding

m Delaying binding possible

class A { int x;

public: virtual void get() { cout << ’A::get()’;}
};

class B : public A { int y;

public: void get() { cout << ’B::get()’;}

}

A a, *p;

B b;

p=&a; p->get();
p=&b; p->get();

m binding of virtual member functions done at run time.

Programming Languages:OO Paradigm, Polymorhism and Class Members
LF’olymorphism
L Abstract Classes

Abstract Classes

void fO = 0 ; makes the function an abstract member

A class with at least one abstract member is an abstract class.

Abstract classes cannot be instantiated

A derived class remains abstract unless all abstract members
are implemented somewhere in derivation chain.

m Java interfaces: abstract classes with only abstract member
functions and constants.

Programming Languages:OO Paradigm, Polymorhism and Class Members

LPolymorphism

L Abstract Classes

m binding of move() is static but the draw()'s inside are still late.

class Shape { int x,y;
public: virtual void draw () = 0;
void move(int a, b) {
setbgcolor (); draw();
x=a; y=b; setfgcolor (); draw(;

}
};
class Circle : public Shape { int r;
public: void draw () { }
I
class Rectangle : public Shape { int w,h;
public: void draw () { }
}

Circle a(...); Rectangle b(...);
a.move(2,4); b.move(3,4);

Programming Languages:OO Paradigm, Polymorhism and Class Members
LF’olymorphism

L Interfaces

Interfaces

Person Eoinpiex
real
name q
. img
m Java does not have multiple

. . . I
inheritance but a class can implement | !

S |
multiple interfaces < <implefnents>>

m Functions working on interfaces
provide polymorphism for the classes
implementing them BEEILE
B Person and Complex implements the lessthan()
interface Sortable so that sort(...) can swapl)

work uniformly on both

sort (Sortable a[],int n);

Programming Languages:OO Paradigm, Polymorhism and Class Members
LF’olymorphism

leplementation of virtual members

Implementation of virtual members

m For each class, a table for virtual member functions are kept
globally (array of function pointers)

m Each object contains a pointer to its virtual function table

m Size of an object is : (size of member variables + pointer to
virtual mem

class A { int x;

public: virtual void f(...)
virtual void g(...)

} a;

class B : public A { int y;

public: virtual void g(...) {...}

} b;

Programming Languages:OO Paradigm, Polymorhism and Class Members

LPolymorphism

leplementation of virtual members

object a J—>class A vtable —>void A::f(...)
_vtable o void (*£)(..) ol

X void (*g)() —>»void A::g(...)

object b J—>c|ass B vtable void B::g(...)
_vtable o void (*£f)(..) oL

A::x void (xg)(..) o
y

one table per class
one pointer
per object
Assuming p points to an object of A or B, p->g(..); call is mapped
by the compiler as:
*((p->_vtable) [11) (...);
(assume 0 is the offset of f, 1 is the offset of g)

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Generic Abstraction

Generic Abstraction

m Abstraction over a declaration

Polymorphism can be defined in terms of generic abstractions
C++ templates

Java generic classes

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Generic Abstraction
L'I'emplates (C++)

Templates (C++)

m Template metaprogramming approach:
All template definitions are expanded as they are instantiated

m Macro-like operation. Parameters can be an type or value.

m each distinct usage like vector<Person> a creates a new instance
of the template class vector.

m All declaration body is expanded as an overloaded version.

m Functions can be declared with templates too. Each distinct
typed call is a new instance, a new overload

m Very efficient but compiled code gets larger as different
instances used

m Parametric polymorphism provied at compile time. Source
code required.

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Generic Abstraction
L Generics (Java)

Generics (Java)

m Restricts parameters to be classes. Primitive types and values
does not work.

m Only one copy of the class and class functions exists.

m Type checking and verification done at compile time.
Polymorphic code compiled in the binary.

m In Java: All object values are references, all member functions
are virtual by default.

m Member functions of the parameter class are bound at
run-time providing parametric polymorphism.

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Class Members

Class Members

m Members shared by objects of the same class. Only one copy
per class.

m Assume you need a counter for each created object

int counter=0;

class A { int x;
public: A(int a) { x=a; counter++;}
“A() { counter--;}
int getcount() { return counter;}

i

m What is wrong with this code?

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Class Members

m static keywords make a member a class member

class A { int x;

static int counter;
public: A(int a) { x=a; counter++;}

“A() { counter--;}

int getcount() { return counter;}
g

int A::counter=0;

m Now the coutner is safe. Arbitrary values cannot be assigned.

m Why do you need an object to call getcount()?

Programming Languages:OO Paradigm, Polymorhism and Class Members
L Class Members

m Member functions can be class members too.

class A { int x;

static int counter;
public: A(int a) { x=a; counter++;}

“A() { counter--;}

static int getcount() { return counter;}
>g

int A::counter=0;

m Class members can be accessed with scope operator:
A::getcount();

m No object required. What if getcount() tries to access an
object? You don't have one!

m Class member functions can only access other class members.

m Objects can access class members.

	Polymorphism
	Abstract Classes

