EE311 Analog Electronics
 Final

Q1) (15 pts.) A class-A emitter follower biased with a constant current source is given in the figure. You can neglect the base currents in your calculations.

a) Determine the value of R that will produce the maximum possible output signal swing. What is the value of I_{Q}, and the maximum and minimum values of $\mathrm{i}_{\mathrm{E} 1}$ and i_{L} ?
b) Using the results of part (a), calculate the conversion efficiency.

Q2) (15 pts.) Consider a three-pole feedback amplifier with a loop gain function given by

$$
T(f)=\frac{\beta \times 1000}{\left(1+j \frac{f}{10^{3}}\right)\left(1+j \frac{f}{5 \times 10^{4}}\right)\left(1+j \frac{f}{10^{6}}\right)}
$$

a) Determine the value of β that yields a phase margin of 45 degrees. What is the value of closed loop low frequency gain for this case?
b) If β is changed to 0.14 , determine the new closed loop low frequency gain and the approximate phase margin.

Q3) (15 pts.) A transconductance (series-series) amplifier is given in the figure. Calculate the closed loop transconductance gain $\mathrm{Agf}_{\mathrm{gf}} \mathrm{i}_{\mathrm{o}} / \mathrm{v}_{\mathrm{s}}$.

Q4) (25 pts.) For the given series-shunt feedback circuit,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \\
& \beta=120 \\
& \mathrm{~V}_{\mathrm{BE}(\mathrm{on})}=0.7 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{A}}=\infty \\
& \mathrm{R}_{1}=400 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=75 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{C} 1}=8.8 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{E} 1}=0.5 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{C} 2}=13 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{E} 2}=3.6 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{E} 3}=1.4 \mathrm{~K} \\
& \mathrm{C}_{\mathrm{C}}, \mathrm{C}_{\mathrm{E}}, \mathrm{C}_{\mathrm{F}} \rightarrow \infty \\
& \mathbf{Q}_{1}, \mathbf{Q}_{2}, \mathbf{Q}_{3} \text { parameters } \\
& \mathrm{g}_{\mathrm{m} 1}=32.81 \mathrm{~mA} / \mathrm{V} \\
& \mathrm{r}_{\pi 1}=3.66 \mathrm{~K} \\
& \mathrm{~g}_{\mathrm{m} 2}=19.12 \mathrm{~mA} / \mathrm{V} \\
& \mathrm{r}_{\pi 2}=6.28 \mathrm{~K} \\
& \mathrm{~g}_{\mathrm{m} 3}=78.08 \mathrm{~mA} / \mathrm{V} \\
& \mathrm{r}_{\pi 3}=1.54 \mathrm{~K}
\end{aligned}
$$

a) Determine the closed loop voltage gain $A_{v f}=v_{o} / v_{i}$.
b) Determine the input resistance $R_{i f}$.
c) Determine the output resistance $R_{o f}$.

Q5) (15 pts.) For the common gate amplifier in the figure,

a) Determine the midband voltage gain $A_{v}=v_{0} / v_{i}$.
b) Determine the upper 3 dB frequency.

$$
\begin{aligned}
& \mathrm{V}^{+}=5 \mathrm{~V} \\
& \mathrm{~V}^{-}=-5 \mathrm{~V} \\
& \mathrm{Rs}^{2}=4 \mathrm{~K} \\
& \mathrm{R}_{\mathrm{D}}=2 \mathrm{~K} \\
& \mathrm{R}_{\mathrm{L}}=4 \mathrm{~K} \\
& \mathrm{RG}_{\mathrm{G}}=50 \mathrm{~K} \\
& \mathrm{R}_{\mathrm{i}}=0.5 \mathrm{~K} \\
& \\
& \text { PMOS } \\
& \mathrm{K}_{\mathrm{p}}=1 \mathrm{~mA} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\text {TP }}=-0.8 \mathrm{~V} \\
& \lambda=0 \\
& \mathrm{Cgs}=4 \mathrm{pF} \\
& \mathrm{Cgd}=1 \mathrm{pF}
\end{aligned}
$$

Q6) (15 pts.) A differential amplifier will be designed using the given topology in the figure.

The specifications are as follows:

1) Your design parameters are I_{1}, I_{2} and R_{D}. You can select them as you wish.
2) The differential-mode gain $\left(\mathrm{A}_{\mathrm{dm}}=v_{d} / v_{i d}\right.$ when $\left.v_{1}=+v_{i d} / 2, v_{2}=-v_{i d} / 2\right)$ should be $\mathrm{A}_{\mathrm{dm}}=10 \mathrm{~V} / \mathrm{V}$.
3) All transistors should operate in SAT.

Best design criteria is to have as low power dissipation (P) as possible.
Fill up the table with your design parameters.

I	Input Design Parameters			Output Parameters							
r	$\begin{gathered} \mathbf{I}_{1} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{I}_{2} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{D}} \\ (\mathbf{k} \boldsymbol{\Omega}) \end{gathered}$	$\mathbf{V}_{\text {GS1 }}$ (V)	$\mathbf{V}_{\text {DS1 }}$ (V)	$\begin{gathered} \mathbf{V}_{\text {SG3 }} \\ (\mathrm{V}) \end{gathered}$	$\mathbf{V}_{\text {SD3 }}$ (V)	$\mathbf{V}_{\text {RD }}$ (V)	$\begin{gathered} \mathbf{A}_{\mathrm{dm}} \\ (\mathbf{V} / \mathbf{V}) \end{gathered}$	$\begin{gathered} \mathbf{A}_{\mathrm{cm}} \\ (\mathrm{~V} / \mathrm{V}) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ (\mathrm{mW}) \end{gathered}$
1											
2											
3											
4											
5											

