
THREADS 
Threads allow separation of loosely coupled parts within a 
program into concurrently executing tasks. Each of these tasks is 
called a thread. More formally, a thread is a sequential flow of 
control in a program. With multiple threads, a program may have 
multiple sequential flows of control which perform several tasks at 
the same time. 
Many computers have a single CPU which switches among threads. 
In order to do this, the available processor time is divided among 
the threads that need it. Each thread is executed for a period of 
time and it is suspended when its allocated time slice elapses. 
After the currently executing thread is suspended, another thread 
waiting for CPU resumes running. By this way, an impression of 
concurrently executing tasks (or multiple CPUs) is given. 
In many cases, threads simplify program design due to its inherent 
support for separation of concerns. With threading, it is also 
possible to perform operations that take a large amount of time in 
the background while doing other tasks. For example, while doing 
some processor intensive task, the user interface may remain 
responsive. In addition, the tasks of varying priority may be 
distinguished by assigning different priorities to each task. 

THREAD CREATİON 
In order to create a thread in a program, an instance of Thread 
class should be created and a run() method should be provided to 
the Thread instance. The run() method may be supplied within a 
class extending the Thread class and overriding run() method, or 
an instance of a class implementing Runnable interface 
(implementing run() method) could be passed to the Thread class 
instance within its constructor as follows: 
Option 1: Declare a subclass of 
Thread class 

Option 2: Pass an instance of a class 
implementing Runnable interface 

class MyThread extends 
Thread {
...

public void run(){
// statements to 

perform the task
}

...
};

// create an instance of 
MyThread
// in a class method 
MyThread myThread = new 
MyThread(); 
...

class MyTask implements Runnable{
...

public void run(){
// statements to perform 

the task
}

...
};

// create an instance of MyThread
// in a class method 
Thread myThread = new Thread(new 
MyTask());

In order put the created thread into execution, the thread’s 



start() method could be invoked as:
myThread.start();

Note: Do not call run() method directly to execute the thread. 
This will correspond to ordinary method call. 

THREAD EXECUTİON 
Calling start() method of a thread instance make a thread 
eligible for execution and returns immediately. The execution 
continues from the next statement while the thread contends for 
the CPU with other threads if any. The thread scheduler, a special 
system process, is responsible for putting the thread into 
execution. At some point in the future, the thread scheduler 
pauses the execution of the current thread and allows one of the 
waiting threads to execute. 
A newly created thread is executed by calling the run() method 
provided to it. After the run() method returns, the thread 
completes its execution and it is considered dead. A dead thread 
cannot be restarted by calling start() method again, but it can be 
used as an ordinary object (to read its attributes, call its methods 
etc). In order to start a new thread, a new instance of the thread 
class has to be created. 
Every thread has a priority between 1 and 10. The default value of 
the priority for a newly created thread is 5. The thread scheduler 
chooses the thread to execute according to the priority assigned 
to that thread. The threads with higher priority have higher 
chance to seize CPU than other threads. The priority of a thread 
can be changed by calling setPriority method as: 
myThread.setPriority(<new priority value>); 
While a thread is executing, the thread scheduler may pause the 
execution it and switch to another thread if the time slice 
allocated to the current thread expires or a higher priority thread 
is waiting to be executed. In this way, the threads share the CPU 
among themselves. 
A thread may request stopping execution of another thread by 
calling the interrupt() method of that thread. Therefore, within 
thread execution, it should be checked whether the thread is 
interrupted or not by calling isInterrupted() method. 

YİELDİNG, SLEEPİNG, AND 
JOİNİNG 
A time-consuming thread may also allow other threads to execute 
by calling the yield() method of the Thread class. If a thread calls 
yield() method, thread scheduler may pause the current thread 
and switch to one of the other waiting threads. Therefore, the 
thread calling yield() will wait until the thread scheduler 
switches back to it. The following example, illustrates the 
behavior of yield(). 



Code
Output
without 
yield()

Output
with yield()

public class MyThread extends 
Thread {

public MyThread(String 
name){

super(name);
}
public void run(){

for(int i=0; i

t1
t1
t1
t2
t2
t2 

t1
t2
t1
t2
t1
t2 

Note: In the above example, a name is assigned to each thread 
through its contstructor. The name of the thread can be returned 
by the getName() method. 
In order to pause the execution of a thread for a specified amount 
of time, sleep() method can be used as:
sleep(<number of milliseconds>);

The sleeping thread does not use CPU. After the specified amount 
of time elapsed, it may be allowed to execute by thread 
scheduler. That is, the waiting time could be longer than the 
specified duration. If the thread is interrupted during sleep 
period, InterruptedException is thrown when sleep() method 
returns. 
The join() method allows a thread to wait until another thread’s 
execution completed. Like, sleep(), InterruptedException could 
be thrown if the calling thread is requested to be interrupted. In 
the following example, the execution continues after t1 completes 
its execution. 

Thread t1 = new Thread(…);
t1.start();
…
t1.join();
// the following statements will be executed after t1 dies.
…

SYNCHRONİZATİON 
In multi-threaded programs, more than one thread may share (or 
use) a resource. In such cases, access to the resource by different 
threads should be synchronized to avoid unexpected results. For 
this purpose, Java allows marking some methods or some block of 
code within a method as critical sections such that only one 
thread is allowed to use the shared resource at a time by 
executing through the critical sections. 
In Java, every object has a lock which can only be controlled by a 
single thread at a time. That is, if a thread acquires the lock of an 
object, the other threads wanting to acquire the lock will wait 
until the lock is released by the thread acquiring the lock. The 
lock of an object could be acquired in three ways: 

A method of a class can be marked as synchronized. In this 



case entire method body will be a critical section. The 
threads executing this method should first acquire the lock 
of the object which is an instance of the class declaring the 
method. When the method returns, the lock is released. For 
example, in the following, only one thread could be 
executing myMethod1() or myMethod2() for the same MyClass 
instance: 

class MyClass{
public synchronized void myMethod1(){

...
}
public synchronized void myMethod2(){

...
}
...

}

A code segment in a method can also be marked as 
synchronized. In this case the statements in the enclosing 
block will be a critical section. The threads executing this 
block should first acquire the lock of the object which is an 
instance of the class declaring the method. After the block 
is executed, the lock is released. For example, in the 
following, only one thread could be executing myMethod1() 
or synchronized block in myMethod2() for the same MyClass 
instance: 

class MyClass{
public synchronized void myMethod1(){

...
}
public void myMethod2(){

...
synchronized (this) {

// synchronized block
...

}
}
...

}

A code segment in a method can be marked as synchronized 
using instance of another class. In this case the statements 
in the enclosing block will be a critical section for the 
corresponding object. The threads to execute this block 
should first acquire the lock of the specified object. After 
the block is executed, the lock is released. For example, in 
the following, only one thread could be executing 
myMethod1() or synchronized block in myMethod2() for the 
same MyClass instance x: 



class MyClass{
public synchronized void myMethod1(){

...
}
...

}

class OtherClass{
public void myMethod2(MyClass x){

...
synchronized (x){

// synchronized block
...

}
}
...

}

WAİT AND NOTİFY 
Synchronized methods and blocks allow a thread to use a resource 
alone. However, in some cases, within a synchronized block, a 
thread maybe waiting for another thread to do something. Since 
this may require the lock of the resource to be acquired by 
another thread, it will never happen and current thread gets 
stuck. In order to provide a means for thread cooperation Object 
class has three methods: wait(), notify(), and notifyAll(). 
The wait() method allows a thread executing in a synchronized 
block to release the lock of the object and wait for an other 
object (or objects) to do something. If a thread calls the wait() 
method of an object within the critical section, it releases the 
lock and waits until one of the other threads calls notify() or 
notifyAll() method of the object. 
The notify() method allows a thread to wake up one of the 
waiting threads. The thread to be awakened is arbitrarily chosen 
by the thread scheduler. That thread should also gain the lock of 
the object before resuming execution. The notifyAll() method 
can be used to wake up all threads waiting. The awakened threads 
should compete to acquire the lock of the object before 
proceeding. Like wait(), notify() and notifyAll() methods have 
to be called within a synchronized block. 


