
APPLETS
Applets are small programs that could be run in Java compatible
web browsers. Applets provide mechanisms to run programs in the
client side and interact with the server hosting it. However, due to
security reasons an applet is a restricted version of standard Java
applications.
In order to create a Java applet containing swing components, a
subclass of JApplet class could be declared. JApplet is a top level
container pane which has a content pane. The controls have to be
added to this content not to the JApplet directly. The content
pane’s default layout manager is border layout.
A simple applet could be created simply by subclassing JApplet
and overriding init() method which contains the startup code
(corresponds to main() method of standard applications) as:

import javax.swing.*;
import java.awt.*;
public class SimpleApplet extends JApplet {

public void init() {
getContentPane().add(new JLabel("Hello

World!"));
}

}

In order to run above applet inside a web browser, <APPLET> tag
could be added to an HTML page and applet is located to the same
directory with the web page. The applet can be referred in the
HTML page
<APPLET code="SimpleApplet" width="120" height="40">
</APPLET>

It is also possible to run applets from the command prompt by
using appletviewer tool (available in Sun’s JDK) as:
appletviewer SimpleApplet.java

APPLET CREATİON AND
EXECUTİON
There are four milestone methods that control the creation and
execution of an applet. According to the needs these methods
could be overridden in the created JApplet subclass. These
methods and their use are as follows:

public void init(): This method is called automatically
when the applet is loaded in a web page. It does the
initialization of the applet and it should be overridden while
subclassing JApplet.
public void start(): This method is called automatically
after the applet is loaded (or the page containing the
applet is revisited). It is used to start up the applet’s
normal execution.
public void stop(): This method is called automatically
when the page is leaved (or the browser is quitted). It is

used to shut off the applet’s normal execution.

public void destroy(): This method is called automatically
when the applet is being unloaded from the page. It can be
used to release resources allocated by the applet.

APPLET BENEFİTS AND
RESTRİCTİONS
Each time a web page containing an applet is visited, the applet is
downloaded from the web server. Therefore, there will be no
deployment and installation issues. However, the download time
could be very large for large applets. Caching of applets in hosts
may reduce the download time but it is not guaranteed.
Most of the capabilities of standard applications are also available
for applets. However, there are some restrictions on applet’s
abilities. These are mainly due to security reasons and change
from browser to browser. Some of the restrictions for an applet
running on a host are as follows:

Applets cannot load libraries, read/write files, and access
certain system properties on the host that is executing it.
However, it can access classes and retrieve files located in
the host it comes from (by specifying a URL relative to the
URL of the page or applet).
Applets can only make network connections to the host it
comes from.

It cannot start any program on the host that is executing it.
However, it can request the web browser to display HTML
documents and call public methods of other applets residing
in the same page.

INTERACTİON WİTH BROWSER
AND OTHER APPLETS
Java enabled web browsers allow an applet to display short/single
line messages on the browser’s status bar. In order to display a
message on the browser’s status bar showStatus() method of the
applet class could be used as:
showStatus("this is a simple message");

AppletContext interface returned by getAppletContext() method
of the applet class corresponds to an applet’s environment. By
using this interface, an applet may obtain information about
document containing the applet and other applets in the same
web page. For example, showDocument() method could be called
to request web browser to display page specified by the url as:
getAppletContext().showDocument(url);

AppletContext interface could also be used to learn other applets
in the same page. For this purpose, the following methods could

be used:

getAppletContext().getApplets(): This method returns an
enumeration of all applets in the current page. This method
could be used as:

Enumeration e = getAppletContext().getApplets();
while(e.hasMoreElements()){
Applet a = (Applet) e.nextElement();
...

}

getAppletContext().getApplet(name): this method returns
the applet with the specified name. If the applet is found,
the instance of the applet class is returned by the method.
Then it is possible to call public methods of the returned
applet. Applet names could be specified in the <APPLET>
tag as:
<APPLET NAME=”myApplet” ...> </APPLET>

PARAMETERS
In order to customize an applet’s operation according to the user's
preferences, applet parameters could be used. A URL, an integer,
a floating point, a boolean, or a string value can be given to an
applet by using parameters. Applet parameters could be supplied
to an applet in the <APPLET> tag as:

<APPLET ...>
<PARAM NAME=”xxx” VALUE=”yyy”>
...

</APPLET>

Applet parameters could be used in the code by calling
getParameter(name) method of the applet class. For example, for
the above applet, the value of parameter xxx could be learned as:
getParameter(“xxx”);

In addition to defining parameters for an applet, a description of
these parameters could be defined by overriding
getParameterInfo() method of the applet class. This will enable
browsers to help the user to set appropriate parameters for the
applet. The getParameterInfo() method should return an array
containing information about parameters as:

public String[][] getParameterInfo() {
String[][] info = {
 {"parameter name", "parameter value", "description"},

...
 };
 return info;
}

LOADİNG DATA FİLES
In some cases, an applet requires loading some data files to

perform its operations. Such files could be downloaded from the
host where the applet is loaded from by specifying a complete or
relative URL of the file requested.
In order to learn where the applet is loaded from, getCodeBase()
and getDocumentBase() methods could be used. The getCodeBase()
method returns the URL where the applet’s classes reside. The
getDocumentBase() method returns the URL where the HTML page
containing the applet is located. There are special methods in
applet class to download an image or a audio clip file by specifying
a complete url of the file or a url and a name (a path relative to
the specified url) for the file. These methods are as follows:

getImage(url);
getImage(url, name);
getAudioClip(url);
getAudioClip(url, name);

For other file types, it is possible to use getClass() method of the
applet class to get a stream for the file. Then that stream could
be used to read the contents of the file. An input stream for a
resource on the server could be created as:
InputStream s = getClass().getResourceAsStream(name);

USİNG JAVA ARCHİVES
If an applet makes use of too many classes or data files, the
download time of the applet may be very large. In this case, an
achieve file which bundles all necessary files in a single file could
be formed. This will reduce the download time especially when
the archive file is compressed.
The files required by an applet could be packaged in a JAR (the
standard java archive format based on the ZIP file format) file by
using the jar utility. For example, the class and image files
required by an applet could be packaged by issuing the following
command:
jar cvf myapplet.jar *.class *.gif

In order to specify the JAR file containing the applet code,
archieve attribute of <APPLET> could be used as:
<APPLET code=MyClass.class archive=myapplet.jar
...></APPLET>

