Network PROGRAMMING

Java provides sockets API to support communication over the
Internet. The classes in java.net package allow network
applications to be built. These classes implement a platform
independent interface to access the communication services
provided by the TCP/IP protocol (the standard protocol used in the
Internet for communication between hosts). Each host connected
to the Internet implements the TCP/IP protocol. Sockets API
define sockets to send/receive data to/from other hosts
connected to the Internet. A socket can be seen as a door between
the network applications and the TCP/IP protocol suite.
Therefore, by using sockets, an application sends/receives
messages to/from other applications running in any host
connected to the Internet.

Each host connected to the Internet has a unique IP address and
optionally a name. In order to send/receive messages to/from
other applications running in the other hosts, an application
should first create a socket in the local system. Since each host
may be running more than one network application, each
application should create at least one new socket to communicate
with other applications. Each socket has an associated unique port
number (an integer between 0-65535). The host name or IP
address is used to uniquely address a host in the Internet, and port
number is used to address a specific application on that host.
Therefore, in order to send a message to a network application,
the name or address of the host running the application and the
port number of the socket used by the application should be
known.

There are two kinds of services provided by the TCP/IP protocol
suite:

Connection oriented - reliable: TCP protocol provides this
service. The protocol guarantees error-free, ordered
delivery of bytes.

Connectionless - unreliable: UDP protocol provides this
service. The protocol does not guarantee error-free,
ordered delivery of messages. Some messages may be lost
during its journey from sending application to receiving
application and order of messages may not be preserved.

Most of the network applications use a client/server mode of
interaction, where a client application contacts to the server
application and requests some service from the server. Then,
server responds to the client’s request. Server applications usually
run on a machine with fixed/known address, and accept
connection requests with a socket with well-known port number.
The server extracts the client’s address and port number from the
request and sends its reply to that address.

ReLiaBLE CommMmunicAaTioN UsinG

TCP

TCP provides a connection oriented-reliable, full duplex (two way) byte stream
delivery service to network applications. That is, it transfers bytes from one
application to another reliably (without loss and corruption, while preserving
byte order).

In order to communicate, a client application must first contact to the server
application. Hence, the server application must first be running and must have
created a serversocket that welcomes client’s contact. Client contacts to the
server by creating a socket instance and specifying the host address and port
number of the server application. Then, client establishes a connection to the
server. When contacted by a client, a new socket is created by the server
application and communication takes place through these sockets. This allows
server application to serve multiple clients at the same time.

A network application can send/receive messages to/from a socket (and the
application at the other side of the connection) using streams. After the
communication completed, the sockets should be closed to free system
resources.

client
SEFVET
,F-"\Lelcnmé‘n
L ~.accept
connectior socket el
_.-fequest Seell
| — F__,-”JJ —L| _

' ‘ ESSagEs I Server
client L‘_Lu.S.E_Lv_&;EIDEkEt Snck\e_t‘_[m.mm_e_m_‘l ;
PP [toClient] @PR

I |
IF0 Strearms TCP Protocol /O Strearms

TCP CLienTt

Suppose that the server application runs on a machine with the
address serveraddress (if both applications will run on the same
host, "localhost" string can be used as the address) and waits at
the port serverport. In order to contact to the server, the client
should first create a socket by specifying serveraddress and

serverPort as:
Socket clientSocket = new Socket (serverAddress, serverPort);

If the server accepts the connection request, above statement will
return a socket instance through which messages can be
sent/received. In order to send and receive messages, the stream
interfaces provided by the socket class could be used. The streams

attached to the socket could be obtained as:
InputStream fromServer = clientSocket.getInputStream() ;
OutputStream toServer = clientSocket.getOutputStream() ;

If required, these streams can be wrapped within some filter
streams. For example, if only single-line text messages will be
sent/received, these streams could be wrapped in

BufferedReader/DataOutputStremnaSZ

BufferedReader fromServer = new BufferedReader (new
InputStreamReader (clientSocket.getInputStream()));

DataOutputStream toServer = new DataOutputStream (
clientSocket.getOutputStream) ;

The output stream’s writeBytes () method could be used to send a

request string to the server as:
String request = "hello world!";
toServer .writeBytes (request + "\n");

Note: The newline character is used in above statement to mark
the end of the request message. Since TCP provides a byte-stream
delivery service, message boundaries are not preserved.
Therefore, special markers may be needed to delineate successive
messages.

The server’s response could be received by using readLine ()

method of the fromserver stream as:
String response = fromServer.readLine() ;

Note: This method call will block until a newline character is
received from the server.

When finished, the socket could be closed as:
clientSocket.close() ;

TCP SERVER

Server applications usually serve more than one client at a time.
Therefore, the server application should be capable of accepting
connection requests from several clients and serving these clients
simultaneously. For this purpose, the server first creates a
welcoming socket bound to a well known port number,

serverPort, and waits for connection requests from clients as:
ServerSocket welcomingSocket = new ServerSocket (serverPort) ;
Socket connectionSocket = welcomingSocket.accept() ;

Each call to accept () method blocks until a client connects to the
server, and returns a socket instance which will be used to
receive/send messages from/to the corresponding client. In order
to support multiple clients at the same time, accept () method
could be called in a separate thread and each connectionsocket
returned could be controlled in a new thread. This corresponds to
a multi-threaded server application.

After having connectionSocket, two streams toclient and

fromclient could be obtained, and they can be used to send a
message or receive a message from client as explained in the
previous section.

UNRELiABLE COMMUNiICATiON

Using UDP

Reliable communication is achieved with some overheads such as
connection establishment delay and large average delay due to
retransmissions. TCP also adjusts the speed of transmission by
monitoring the congestion level in the network. However, some
network applications like multimedia applications, are sensitive to
delay and transmission rate. However, they can tolerate a
reasonable amount of loss. For such applications, UDP is the most
appropriate choice.

UDP is a no-frills, bare-bone protocol providing best-effort
connectionless service. That is, some of the messages may be lost
or messages arrive to destination out of order. UDP applications
exchange packets of data, called datagrams. A datagram is a self
contained message sent over the network. The UDP service is
accessed by patagramsockets and network applications
send/receive patagramPackets through the pataGramsockets.

In the following sections, a simple client/server application using
UDP will be explained. As in the reliable communication case, the
server application runs on a host with a well known address and
waits requests from a socket bound to a well known port number.
However, in UDP case, there will not be a connection
establishment phase, and through a single socket, it is possible to
send/receive datagrams to/from multiple hosts.

UDP CLient

Like TCP, UDP service is access through sockets. In order to access
UDP service, a DatagramSocket instance has to be created. The
DatagramSocket constructor optionally accepts a port number to
bind the socket to. If Port number is not specified, the operating
system will assign an unused port number to the new socket.
Usually client applications do not specify port numbers while

creating sockets. A datagram socket could be created as:
DatagramSocket clientSocket = new DatagramSocket() ;

It is possible to send/receive packets to/from different network
applications through a single socket. Therefore, while sending a
message, the destination of the message should also be specified.
The messages should be encapsulated in patagramPackets to be
sent through a socket. In addition, a packet should contain address
and port number to deliver the message. Therefore, a simple
message could be sent to an application bound to port number
port, running on a host with name hostName as:

String request = "hello world!";
byte msg[] = request.getBytes() ;

InetAddress address = InetAddress.getByName (hostName) ;
DatagramPacket packet = new DatagramPacket (msg,

msg.length, adress, port);
clientSocket. send (packet) ;

In order to receive messages from other applications,
DatagramSocket’s receive () method could be used. The receive ()
method also requires a placeholder for the arriving packet.
Therefore, a new patagramPacket instance should be created and
given to receive () method as:

byte msg[] = new char[1024];
DatagramPacket packet = new DatagramPacket (msg, msg.length) ;
clientSocket.receive (packet) ;

Note: The receive () method blocks until a datagram arrives to
the application. To avoid blocking, patagramsocket's
setSoTimeout (timeout) Method could be used. If no datagram
appears in timeout duration, the method returns and
SocketTimeoutExceptioniSraEed.

UDP SEeRVER

The implementation of Server is very similar to the client's
implementation. However there are two important points to
ponder while implementing servers.

The first difference from the client is that the server’s port
number should be known by the clients. Therefore, the server port

number should be specified while creating the socket as:
DatagramSocket serverSocket = new ServerSocket (port) ;

The second difference is that upon receiving a request from the
client, the client’s address and port number should be extracted
from the arriving packet as:

InetAddress IPAddress = receivePacket.getAddress() ;
int port = receivePacket.getPort() ;

These values can be used to prepare and send reply to the client.

