

n Sasi Sasi

Course Syllabus

EE 209 Fundamentals of Electrical and Electronics Engineering (3-0)3

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety
- (Offered to non-EE students only)

Prerequisite: PHYS 106 or consent of the department.

Book for the Course

Book for the Course

GIORGIO RIZZONI

ROUATH COITION

PRINCIPLES AND APPLICATIONS OF ** ELE(TRI(AL ENGINEERING**

Principles and Applications of Electrical Engineering, 4/e

Giorgio Rizzoni The Ohio State University

Mc. Graw Hill Book Company,

ISBN: 0072463473 Copyright year: 2003 999 Pages *Available in Reserve Division of the Middle East Technical University Central Library*

Course Syllabus

GIORGIO RIZZONI

FOURTH EDITION

PRINCIPLES AND APPLICATIONS OF ** ELE(TRI(AL ENGINEERIG**)

Chapters to be Covered

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety

Basic Principles of the Course

Examinations

Two midterm examinations and a final exam

Midterm Exam 1
Midterm Exam 2(Three questions, equal credits, 90 min)
(Three questions, equal credits, 90 min)
(Four questions, equal credits, 120 min)
Attendance

100 %

20 %

20 %

30 %

30 %

Homework

No homeworks will be assigned

You are advise to examine;

- the homeworks in the book,
- examination questions that will be distributed

Basic Principles of the Course

Examinations

- <u>Midterm examinations</u> will cover all the material taught until the examination date,
- **Final Examination** will cover the overall course material,
- Announced exam schedule can neither be changed nor discussed after it has been settled,
- Duration of the examination will never be extended,
- Questions will never be allowed during the examination

Basic Principles of the Course

Make-up Examinations

- Will be given only to those students with valid documented excuse,
- Requests for make-up exam that does not include a valid documented excuse will be rejected,
- A single make-up exam will be given to all students with legitimate rights for the exam,
- Exam will be carried out in an officially settled date and hour,
- Exam will not be repeated, i.e. Make-up of make-up will not be performed,
- Students will be responsible for answering the questions only from the parts covered in the exam that they have missed

Questions and Solutions of the Previous Examinations

Exam Questions and Solutions

- A file including all exam questions and solutions is available,
- A file including the questions and solutions of all the previous examinations will be submitted to a student who is elected by the class for photocopying and distributing this file to the class,
- This student will be responsible for the toll collection and distribution activity

In case that there is no valunteer for the job, the task will be cancelled !

Yahoo Group for the Course

http://groups.yahoo.com/group/ee209/

Yahoo Group for the course is;

http://groups.yahoo.com/group/ee209/

This group is intended to be the main communication medium for information exchange and storage for the course

Enrollment to this group is compulsory ----

All students are obliged to subscribe to this group by using the procedure described in the next page

E-mail Group

Enrollment

To subscribe from the group, send an email to: ee209-subscribe@yahoogroups.com

To unsubscribe from the group, send an email to: ee209-unsubscribe@yahoogroups.com

Nicknames (User Ccodes)

Nicknames

Please choose nicknames that reflect your personal identity, i.e. your surname and/or name and/or you name and surname augmented. Please do NOT choose improper or annoying nicknames, such as; "Arizona Tigers", "diabolic, "best friend", "miserable(68)" etc. that does not reflect your personal identity

Communication

All questions, suggestions, complaints, demands, requests and other communication concerning the course should be directed to the e-mail communication address of the group: ee209@yahoogroups.com

The Course Instructor keeps the right of not answering some or all of the questions, suggestions, complaints, demands, requests forwarded in this mail group, in case that it is not necessary, or not relevant, or not possible

Rules of Communication

In your e-mails;

- <u>Be polite</u>,
- Start your letter with; "Dear Group Members" or "Dear Friends" and end with; "With best regards"
- Do not use disturbing abbreviatons, such as "slm" for "selam",
- Do not discuss your own personal, social or academic problems,
- Do not be aggressive to the Group members and to Course Instructor,
- Do not discuss subjects not relevant to the course, (such as last match of Fenerbahçe)

People who violate the above rules will be deleted from the group

Group Moderators

Course Instructor is the Main Moderator of the e-mail Group.

Assistant Moderator

An assistant moderator who is familiar with the management of yahoogroups activities, will be elected and appointed for managing the group from valunteer candidates in the class during the first hour. Moderators have identical authorities in group management in all respects

Problems

Complaints and Expressions

- **Complaints and expressions concerning your;**
- personal,
- <u>Social</u>,
- <u>Academic</u>

problems will never be listened, nor be appreciated nor be interested.

- Your personal, social and academic problems will <u>never</u> be an influencing factor in grading,
- Your personal, social and academic problems will not be taken into account at all

This course is NOT a proper platform for expressing your own problems, negative or positive human feelings, such as, crying, complaining, hating, admiring, or any other physiologic, psychological expressions

E-mail Group

Office Hours

Unfortunately, there will not be any chance for office hour

- Please do not refer my office for any reason,
- and do not blame for that.

E-mail Group

Telephone Calls

My GSM No: 0 532 384 78 65

Telephone calls for concerning your personal, social and academic problems will neither be listened, nor be appreciated nor be interested

Weekly Course Schedule (Three hours/week)

	Monday	Tuesday	Wednesday	Thursday	Friday
08:40					
09:40					
10:40		EE 209 Group 03			
11:40		(ME), G-203			
12:40		EE 443, D 131		EE 209 G-102	
13:40					
14:40					
15:40				EE 443, D 131	
16:40					
17:40					

Announced schedule can be discussed

Atom

Electrical Charge

Definition

Unit of Electrical Charge Coulomb

6.3 x 10¹⁸ electrons $\stackrel{\varDelta}{=}$ 1 Coulomb or Electrical charge / electron = 1/ (6.3 x 10¹⁸)

Coulomb

= 1.602 x 10⁻¹⁹ Coulomb

Basic Principle of Circuit

Mechanical Example

Inclined Surface

Water Circuit

Water Current = Volume (m³) / sec

Water Circuit

Electrical Current = No. of electrons / sec = 1 Coulomb / sec 6.3 x 10¹⁸ electrons / sec = 1 Amper

Electrical Circuit

Voltage Difference

Ground Node (Earth Point)

Ground Node (Earth Point)

Electrical Current

Traffic Current

Water Current

Birecik Dam (672 MW)

Example: Electrical Current

- A cylindrical conductor is 1 m long and 2 mm in diameter and contains 10²⁹ free carriers per cubic meter.
 - I. Find the total charge of the carriers in this wire.
- 2. If the wire is used in a circuit, find the current flowing in the wire if the average velocity of the carriers is 19.9×10^{-6} m/s.

2 mm diameter

1 meter

1 meter

Basic Principles of Electricity

Example: Electrical Current

Solution:

1. In order to compute the total charge contributed by the electrons, we first need to compute the volume of the conductor.

Volume = Length \times Cross-sectional area

$$= \pi r^2 L = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^2 (1)$$

Next we compute the charge by determining the total number of charge carriers in the conductor as follows:

Charge = Volume ×
$$\frac{\text{Charge}}{\text{Unit volume}}$$

$$Q = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^2 (1)(-1.602 \times 10^{-19} \text{ C}) \left(10^{29} \frac{\text{carriers}}{\text{m}^3}\right)$$

$$= -50.33 \times 10^3 \text{ C}$$

2 mm diameter

1 meter

Electrical Current

2. If the carriers move with an average velocity of 19.9×10^{-6} m/s, the magnitude of the total current flow in the wire can be computed by considering that current is the flow of charge per unit time:

Current = Charge density per unit length $(C/m) \times$ Carrier velocity (m/s)

$$= \frac{50.33 \times 10^3}{1} \times 19.9 \times 10^{-6}$$
$$= 1 \text{ A}$$

2 mm diameter

Electrical Current - Basic Principle

Electrical Current DC (Direct Current) Sources

Simple AC Circuit

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

 \otimes

Mechanical Force

Mechanical Energy

Power

Definition

Power is the work done within a certain unit of time, i.e. one second or one hour Power = Energy / Duration

= 1 Joule / sec

Please note that force (and hence power) of the <u>weak horse</u> shown below is half of the first, but the work done (energy spent) is the same, i.e. Energy = 2 seconds x 0.5 Newton x 1 meter

Mechanical Energy vs Electrical Energy

Mechanical Energy (Work) = 1 Joule

Electrical Energy (Work) = 1 Joule

Electrical Power

Definition

Similar to mechanical power, electrical power is the work done within a certain unit of time, i.e. one second or one hour *Elecrical Power = Electrical Energy / Duration*

= 1 Joule / sec

(1 sec)

Equivalence of Mechanical and Electrical Powers

Electrical Power

Electrical Power

Voltage

Electrical Energy

Energy = Power x Time

Unit of Electrical Energy

Electrical Energy

Example

Source voltage is 220 Volt Current drawn by the lamp is 5 Amp Price of electrical energy is 12 Cents / kWh

Power = Voltage x Current P = V x I P = 220 x 5 = 1100 Watts Energy = $P \times \Delta t$ = 1100 Watts x (24 hours /day x 30 days/month) = 792000 Watt hours = 790.2 kWh Monthly payment = 790.2 x 12 Cents / month = 90.504 USD = 122 .1 YTL / month

Alternative Definition of Voltage

= 1 Watt / 1 Amp
= (1 Joule /sec) / 1 Amp
= 1 Joule / (1 Amp x sec)
= 1 Joule / 1 Coulomb (*)

(*) Remember that 1 Amp = 1 Coulomb / 1 sec

1 Volt is the voltage needed;

- to move 1 Coulomb of electrical charge,
- to spend 1 Joule of energy for this movement in a conductor

Alternative Definition of Voltage

1 Volt = 1 Joule / 1 Coulomb

Please note that time parameter does not appear in the above equation, implying that it is arbitrary

Case-1

Let t = 1 secThen, I = 1 Coulomb / 1 sec = 1 Amp $P = V \times I = 1 \text{ Volt } \times 1 \text{ Amp} = 1 \text{ Watt}$ Energy = $P \times t = (1 \text{ Joule } / \text{ sec}) \times \text{ sec} = 1 \text{ Joule}$ <u>Case-2</u> Let now t = 2 secThen, I = 1 Coulomb / 2 sec = 0.5 Amp

P = V x I = 1 Volt x 0.5 Amp = 0.5 Watt = Energy / 2 = 0.5 Joule / sec Energy = P x t = 0.5 x 2 = 1 Joule again

Resistance

Resistance

Definition

Resistance is the reaction of a conductor against electrical current

Ohm Law

Ohm Law

Two circuits with different Resistances, identical voltage sources

Ohm Law V-I Characteristics

Ohm Law - Example

Ohm Law Nonlinear V-I Characteristics

Note that resistance increases with temperature, Rx hence current is reduced (Volt) (Ohm) (Amp) Voltage (Volts) 200 150 100 $R = R_o (1 + \alpha \Delta t)$ Temperature coefficients of resistance or resistivity of $\Delta t = T - 23^{0} C$ some metals(10⁻³/°C): R_0 = Resistance at 23 ^o C Silver 3.8 Copper 3.9 Gold 3.4 Aluminum 3.9 α = The temperature coeff. of the metal 5.0 Tungsten 4.5 Iron Nichrome 0.4 Platinum 3.92 50 0 Slope = $\Delta V / \Delta I = R$ V = 220 V-50 -100 -150 -200 -250 -15 -5 10 15 -10 0 5 I = 5 AmpLoad Current I (Amp)

Resistance Formula

Resistance Formula

Resistance Formula

Resistance of a cable is proportional to the length and inversely proportional to the cross sectional area of the cable

 $R = \rho l / A$

where, R is the resistance of conductor, ρ is the resistivity coefficient, $\rho = 1 / 56 \text{ Ohm-mm}^2/\text{m}$ (Copper) $1 / 32 \text{ Ohm-mm}^2/\text{m}$ (Aluminum) ℓ (m) is the length of the conductor A (mm²) is the cross sectional area of the conductor

Resistance Formula

Resistance Formula

Resistance Formula	ACSR Conductor (Aluminum Conductor Steel Reinforced)	
Example Calculate the resistance of a copper cable with length 3200 meters and cross section 240 mm ²		
<u>Solution</u> R = (1 / 56) 3200 / 240 = 0.238 Ohms		
	l 3200 (m)	A = 240 (mm ²)

Resistivity Coefficients of Various Metals

Formula		Resistivity Coefficients		
ρ = 1 / 56 Ohms/meter (Copper) = 0.0178571 Ohm-mm²/m		Material	Resistivity Coefficient	Resistance
		Ohm-mm²/m	Ohms/feet	
$R = \rho \ell / A$ where, R is the resistance of conductor, ρ is the resistivity coefficient, $\rho = 1 / 56 \text{ Obm mm}^2 / m (Conner)$		Silver	0.0162	0.00094
		Copper	0.0172	0.00099
	Gold	0.0244	0.00114	
	Aluminum	0.0282	0.00164	
$\rho = 1/30 \text{ Ohm-mm}^2/\text{m} (Copper)$ 1/32 Ohm-mm ² /m (Aluminum)		Mercury	0.9580	
 (m) is the length of the conductor A (mm²) is the cross sectional area of the conductor 	Brass	0.0700	0.00406	
	Nickel	0.7800	0.00452	
	Iron	0.1000	0.00579	
		Platinium	0.1000	0.00579
		Steel	0.1180	0.00684
		Lead	0.2200	0.01270

Color Codes for Resistances

Insulator

Power dissipation in a Resistance

Series Connected Resistances

Series Connected Resistances

Equivalent Resistance Formula

Series connected resistances are added

Ohm Law for Series Resistances

Admittance

Shunt Connected Resistances

Equivalent Resistance Formula

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 78

Shunt Connected Resistances

Equivalent Resistance Formula

Shunt Connected Resistances

Shunt Connected Resistances

Voltages on Series Connected Elements

Voltages on series connected elements are added

Voltages on Series Connected Elements

Voltages on series connected elements are added

Kirchoff's Voltage Law (KVL)

Kirchoff's Voltage Law (KVL)

Kirchoff's Voltage Law (KVL)

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Choose a ground node,
- Assume that current I flows clockwise,
- Starting from the ground node, assign "+" and "-" signs to those passive elements (i.e. those elements other than source) in such a direction that the current enters to "+" side and the leaves from the "-" side,
- Assign "+" sign to the that side of the source from which current is leaving

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Then write down the voltages on each element by using Ohm Law on a path in a clockwise direction,
- Assign "+" sign to those voltage terms in the equation that you pass from "-" to "+",
- Assign "-" sign to those voltage terms in the equation that you pass from "+" to "-",
- Stop and equate it to zero when you come again to the ground node that you have started

Example;

$$+V_s - V_1 - V_2 = 0 \longrightarrow V_s = V_1 + V_2$$

Summary of Kirchoff's Laws

Kirchoff's Current Law (KCL)		Kirchoff's Voltage Law (KVL)
Algebraic sum of currents entering a junction is zero		Algebraic sum of voltages in a closed loop is zero
$\sum_{i=1}^{i=n} I_i = 0$		$\sum_{i=1}^{i=n} V_i = 0$
Node (Junction)		Current I (Amp)
Current I _n	$ \longrightarrow Current I_1 $ $ \longrightarrow Current I_2 $	$V_1 = -100 (Volt)$
	Current I _{n-1}	$V_{n-1} = -120 \text{ (Volt)}$

Voltage Division Principle

Potentiometer (Voltage Divider)

Potentiometer (Voltage Divider)

Current Division Principle

 $V_T \times g_1 = I_1$ $V_T \times g_2 = I_2$... $V_T \times g_k = I_k$ $V_T(g_1 + \dots g_k) = I_1 + \dots I_k$ **O**ľ $V_T(g_1 + ..., g_k) = I_s$ $I_{k}/I_{s} = g_{k}/(g_{1} + ... + g_{k})$

Voltage Sources

Definition

Voltage source is an element which creates a voltage difference at its terminals

A simple Rule:

Current is assigned such a direction that it always leaves the '+' side of the voltage or current source.

DC Voltage Source

Ideal Voltage Source

Definition

An ideal voltage source is the one that the terminal voltage does not change with the current drawn

An ideal voltage source has zero internal resistance

Non-Ideal (Real) Voltage Sources

Definition

A voltage source always has an internal resistance R connected in series with the source

Writing down KVL for the above cct;

$$V_{\rm s} - \Delta V - V_{\rm T} = 0$$

or

 $V_T = V_s - \Delta V$ where, $\Delta V = R \times I$

is called "internal voltage drop"

Terminal voltage V_T is reduced by ΔV

Non-Ideal (Real) Voltage Sources

Ideal Current Source

Definition

Ideal Current Source

An ideal current source is an element providing a constant current from its terminals

Non-Ideal (Real) Current Source

Non-Ideal (Real) Current Source

Example

Measuring Devices - Ammeter

An ammeter is a <u>measuring instrument</u> used to measure the flow of electric current in a circuit. Electric currents are measured in <u>amperes</u>, hence the name The word "ammeter" is commonly misspelled or mispronounced as "ampmeter" by some The earliest design is the D'Arsonval galvanometer. It uses magnetic deflection, where current passing through a coil causes the coil to move in a magnetic field The voltage drop across the coil is kept to a minimum to minimize resistance in any circuit into which the meter is inserted

Measuring Devices - Ammeter

Ampere - Volt - Ohm (AVO) Meter An ammeter is always series connected in the circuit measured Ammeter load **R**_I Lamp Battery

Ideal Ammeter

Definition An ideal ammeter is the one with zero internal resistance (Short Circuit)

- An ideal ammeter behaves as a short circuit, i.e. $R_{amp} \simeq 0$.
- An ideal ammeter has zero resistance so that the measured current is not influenced

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

Ideal Ammeter

An ammeter should not influence the current measured

 $I = V_{s} / (R + R_{amp})$ $R_{amp} \cong 0$

Hence,

$$I = V_{\rm s} / (R + R_{\rm amp}) \cong V_{\rm s} / R$$

Non-Ideal (Real) Ammeter

Definition

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

A real (non-ideal) ammeter has always an internal resistance in series

- A non ideal ammeter behaves as a series resistance with: $R_{amp} \neq 0$
- Hence the the measured current is influenced (reduced)

$$\left. \begin{array}{c} I_{load} = V_s / (R + R_{amp}) \\ I_{load} = V_s / R \end{array} \right\} \longrightarrow I_{load} < I_{ideal}$$

Non-ideal Ammeter

Measuring Devices – Clamp Ammeter

The Need for Clamp Ammeter

Sometimes the electrical service carried out by the circuit may be so vital that it can not be interrupted by breaking the line for a series connection of the ammeter

Ammeter shown on the RHS is a particular design for such circuits to measure current flowing in the circuit as well as resistance without braeaking the circuit

V Hz~

V Н2Л

48

RPM20

OFF

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current An ideal voltmeter has a very large resistance so that the the circuit in which it has been placed is not disturbed An ideal voltmeter is an open circuit However, no voltmeter can ever be ideal, and therefore all voltmeters draw some small current

Measuring Devices - Voltmeter

Ideal Voltmeter

Definition

An ideal voltmeter is the one with infinite internal resistance (Open circuit)

An ideal voltmeter has a very large resistance, $R_m \cong \infty$. i.e. it behaves as an open circuit, so that the the measured circuit is not influenced However, no voltmeter can ever be ideal,

and therefore all voltmeters draw some current

A real voltmeter has a certain internal resistance so that it passes a certain current

Ideal Voltmeter

Example

Example

Problem	Ideal Voltmeter	l _m ≅0
$R_{s} = 1 / g_{s} = 1 / (4 \times 10^{-5}) \text{ Siemens} \\ = 10^{5} / 4 = 25 \text{ k}\Omega$ $I_{s} \times R_{eq} = V_{read} = 11.81 \text{ Volts} \\ \text{Hence,} \\ R_{eq} = V_{read} / I_{s} = 11.81 / (0.48 \times 10^{-3}) \\ = 24607.17 \Omega$ $R_{eq} = R_{s} / / R_{m} \\ \text{Hence,} \\ R_{eq} = (R_{s} \times R_{m}) / (R_{s} + R_{m}) = 24607.17 \Omega$ $R_{eq} = (R_{s} \times R_{m}) / (R_{s} + R_{m}) = 24607.17 \Omega$	$\int_{g_{m}} Non-ideal V$	/oltmeter I m (negligible) Voltmeter m

Advanced Measuring Devices

Power Quality Analyzer

GÜÇ KALİTESİ ANALİZÖRÜ

Wheatstone Bridge

<u>The Wheatstone Bridge</u> is an electrical circuit used to determine an unknown resistance R_x by adjusting the values of known resistances, so that the current measured in the line connecting the terminals C and D is zero

Wheatstone Bridge

Principle

Adjust the resistances R_1 , R_2 and R_b such that the ammeter connected between the terminals C and D reads zero current

Hence, the voltage difference between the terminals C and D is zero

$$\Delta V_{CD} = 0$$

or
$$V_{C} = V_{D}$$

Wheatstone Bridge

Wheatstone Bridge

Basic Rule Cross multiplication branch Α resistances must be equal at balance condition R٩ $R_x \times R_2 = R_h \times R_1$ | = 0Π Please note that voltage V_s is neither used, nor needed in the above equation, i.e. its value is arbitrary R🤊 B

Wheatstone Bridge

Example

Calculate the value of unknown resistance R_x in the balanced Wheatstone Bridge shown on the RHS

Cross multiplication of branch resistances must be equal at balance condition:

 $R_{x} \times R_{2} = R_{b} \times R_{1}$ $R_{x} = R_{b} \times R_{1} / R_{2}$ = 100 x 100 / 20 = 500 Ohm

Switch - Circuit Breaker

Switch or Circuit Breaker

Switch or circuit breaker is a device used to open an electrical circuit manually or automatically by an electronic relay system

R₁

Load

Meaning of "Open" and "Closed" (Highly Important)

Thermal-Magnetic Circuit Breaker

220 Volt, 63 Amp. Thermal-Magnetic (Molded-Case) Breaker

there is no voltage (current) in the circuit !

Medium Voltage (36 kV) Vacuum Circuit Breaker

