Basic Principles of Electricity

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 1

Basic Principles of Electricity

Course Syllabus

클 209
 Fundamentals of Electrical and Electronics Engincering (3-0)3

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety
(Offered to non-EE students only)
Prerequisite: PHYS 106 or consent of the department.

(1) Basic Principles of Electricity METU

Book for the Course

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 3

Basic Principles of Electricity

Book for the Course

GIOhGIO hIZZONI
Principles and Applications of Electrical Engineering, 4/e

Giorgio Rizzoni
 The Ohio State University

Mc. Graw Hill Book Company,

ISBN: 0072463473
Copyright year: 2003 999 Pages
Available in Reserve Division of the Middle East Technical University Central Library

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 4

Basic Principles of Electricity

Course Syllabus

GIOhGIO hIZZONI

FOURTH EDIIOK
PRINCIPLES AND APPLICATIONS OF

Chapters to be Covered

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety

Basic Principles of Electricity

Basic Principles of the Course

Examinations

Two midterm examinations and a final exam

Midterm Exam 1 (Three questions, equal credits, 90 min) Midterm Exam 2 (Three questions, equal credits, 90 min) Final Exam (Four questions, equal credits, 120 min) Attendance

Basic Principles of Electricity

Homework

No homeworks will be assigned

You are advise to examine;

- the homeworks in the book,
- examination questions that will be distributed

Basic Principles of Electricity

Basic Principles of the Course

Examinations

- Midterm examinations will cover all the material taught until the examination date,
- Final Examination will cover the overall course material,
- Announced exam schedule can neither be changed nor discussed after it has been settled,
- Duration of the examination will never be extended,
- Questions will never be allowed during the examination

Basic Principles of Electricity

Basic Principles of the Course

Make-up Examinations

Will be given only to those students with valid documented excuse, Requests for make-up exam that does not include a valid documented excuse will be rejected,

- A single make-up exam will be given to all students with legitimate rights for the exam,
- Exam will be carried out in an officially settled date and hour, Exam will not be repeated, i.e. Make-up of make-up will not be performed,
Students will be responsible for answering the questions only from the parts covered in the exam that they have missed

Basic Principles of Electricity

Exam Questions and Solutions

- A file including all exam questions and solutions is available,
- A file including the questions and solutions of all the previous examinations will be submitted to a student who is elected by the class for photocopying and distributing this file to the class,
- This student will be responsible for the toll collection and distribution activity

In case that there is no valunteer for the job, the task will be cancelled !

Basic Principles of Electricity

Yahoo Group for the Course

httpl/groups-yahoo-com/group/ee209/

Yahoo Group for the course is;
httpA/groups-yahoo-com/group/se209/

This group is intended to be the main communication medium for information exchange and storage for the course
Enrollment to this group is compulsory ---
All students are obliged to subscribe to this group by using the procedure described in the next page

Basic Principles of Electricity

E-mail Group

Enrollment

To subscribe from the group, send an email to: ee209-subscribe@yahoogroups.com
To unsubscribe from the group, send an email to: ee209-unsubscribe@yahoogroups.com

Basic Principles of Electricity

E-mail Group

Nicknames (User Gcodes)

Nicknames

Please choose nicknames that reflect your personal identity, i.e. your surname and/or name and/or you name and surname augmented.

Please do NOT choose improper or annoying nicknames, such as; "Arizona Tigers", "diabolic, "best friend", "miserable(68)" etc. that does not reflect your personal identity

Basic Principles of Electricity

E-mail Group

Communication

All questions, suggestions, complaints, demands, requests and other communication concerning the course should be directed to the e-mail communication address of the group: ee209@yahoogroups.com

The Course Instructor keeps the right of not answering some or all of the questions, suggestions, complaints, demands, requests forwarded in this mail group, in case that it is not necessary, or not relevant, or not possible

Basic Principles of Electricity

E-mail Group

Rules of Communication

In your e-mails;

- Be polite,
- Start your letter with; "Dear Group Members" or "Dear Friends" and end with; "With best regards"
- Do not use disturbing abbreviatons, such as "slm" for "selam",
- Do not discuss your own personal, social or academic problems,
- Do not be aggressive to the Group members and to Course Instructor,
- Do not discuss subjects not relevant to the course, (such as last match of Fenerbahçe)
People who violate the above rules will be deleted from the group

Basic Principles of Electricity

E-mail Group

Group Moderators

Course Instructor is the Main Moderator of the e-mail Group.

Assistant Moderator

An assistant moderator who is familiar with the management of yahoogroups activities, will be elected and appointed for managing the group from valunteer candidates in the class during the first hour. Moderators have identical authorities in group management in all respects

Basic Principles of Electricity

Problems

Complaints and Expressions

Complaints and expressions concerning your;

- personal
- Social,
- Academic
problems will never be listened, nor be appreciated nor be interested.
- Your personal, social and academic problems will never be an influencing factor in grading,
- Your personal, social and academic problems will not be taken into account at all

This course is NOT a proper platform for expressing your own problems, negative or positive human feelings, such as, crying, complaining, hating, admiring, or any other physiologic, psychological expressions

Basic Principles of Electricity

E-mail Group

Office Hours

Unfortunately, there will not be any chance for office hour

- Please do not refer my office for any reason,
- and do not blame for that.

Basic Principles of Electricity

E-mail Group

Telephone Galls

My GSM No: 05323847865

Telephone calls for concerning your personal, social and academic problems will neither be listened, nor be appreciated nor be interested

Basic Principles of Electricity

E-mail Group

Weekly Course Schedule (Three hours/week)

$\left.\begin{array}{|c|c|c|c|c|c|}\hline & \text { Monday } & \text { Tuesday } & \text { Wednesday } & \text { Thursday } & \text { Friday } \\ \hline 08: 40 & & & & & \\ \hline 09: 40 & & & & & \\ \hline 10: 40 & & \text { EE 209 Group 03 } \\ \text { (ME), G-203 }\end{array}\right)$

Announced schedule can be discussed

Basic Principles of Electricity

Atom

Structure of atom

Helium Atom

Electron is assumed to be negatively charged Proton is assumed to be positive charged

Basic Principles of Electricity

Electrical Charge

Definition

Unit of Electrical Charge Coulomb

6.3×10^{18} electrons $=1$ Coulomb
or
Electrical charge $/$ electron $=1 /\left(6.3 \times 10^{18}\right)$
 Coulomb
$=1.602 \times 10^{-19}$ Coulomb

(
 Basic Principles of Electricity

Basic Principle of Circuit

Mechanical Example

Inclined Surface

Basic Principles of Electricity

Water Circuit

Water Current (I)

Water Current = Volume (m³) / sec

Basic Principles of Electricity

Water Circuit

Basic Principles of Electricity

Electrical Circuit

Electrical Current (I)

Electrical Current $=$ No. of electrons $/$ sec = 1 Coulomb / sec
6.3×10^{18} electrons $/ \mathrm{sec}=1$ Amper

(
 Basic Principles of Electricity

Electrical Circuit

Electrical Current (I)

Basic Principles of Electricity

Voltage Difference

Basic Principles of Electricity

Ground Node (Earth Point)

Definition

Ground Node is the point (junction) at which the voltage is assumed to be zero
All other voltages takes their references with respect to this ground node

Representation

Current (I)

Basic Principles of Electricity

Ground Node (Earth Point)

Definition

Ground Node is the point (junction) at which the voltage is assumed to be zero
All other voltages takes their references with respect to this ground node

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 30

Basic Principles of Electricity

Electrical Current

Current = no. of electrons transferred / time duration

$$
I=\Delta Q / \Delta t
$$

1 Amp = 1 Coulomb / 1 Seconds

Charge $=$ Current x Time duration

$$
\Delta Q=I \times \Delta t
$$

Current
(I)

Basic Principles of Electricity

Traffic Current

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 32

(
 Basic Principles of Electricity

Water Current

Birecik Dam (672 MW)

(
 Basic Principles of Electricity

Example: Electrical Current

A cylindrical conductor is 1 m long and 2 mm in diameter and contains 10^{29} free carriers per cubic meter.

1. Find the total charge of the carriers in this wire.
2. If the wire is used in a circuit, find the current flowing in the wire if the average velocity of the carriers is $19.9 \times 10^{-6} \mathrm{~m} / \mathrm{s}$.

2 mm diameter

Basic Principles of Electricity

Example: Electrical Current

2 mm diameter

Solution:

1. In order to compute the total charge contributed by the electrons, we first need to compute the volume of the conductor.

Volume $=$ Length \times Cross-sectional area

$$
=\pi r^{2} L=\pi\left(\frac{2 \times 10^{-3}}{2}\right)^{2}(1)
$$

Next we compute the charge by determining the total number of charge carriers in the conductor as follows:

$$
\begin{aligned}
\text { Charge } & =\text { Volume } \times \frac{\text { Charge }}{\text { Unit volume }} \\
Q & =\pi\left(\frac{2 \times 10^{-3}}{2}\right)^{2}(1)\left(-1.602 \times 10^{-19} \mathrm{C}\right)\left(10^{29} \frac{\text { carriers }}{\mathrm{m}^{3}}\right) \\
& =-50.33 \times 10^{3} \mathrm{C}
\end{aligned}
$$

Basic Principles of Electricity

Electrical Current

2. If the carriers move with an average velocity of $19.9 \times 10^{-6} \mathrm{~m} / \mathrm{s}$, the magnitude of the total current flow in the wire can be computed by considering that current is the flow of charge per unit time:

$$
\begin{aligned}
\text { Current } & =\text { Charge density per unit length }(\mathrm{C} / \mathrm{m}) \times \text { Carrier velocity }(\mathrm{m} / \mathrm{s}) \\
& =\frac{50.33 \times 10^{3}}{1} \times 19.9 \times 10^{-6} \\
& =1 \mathrm{~A}
\end{aligned}
$$

2 mm diameter

Basic Principles of Electricity

Electrical Current - Basic Principle

Electrons

Basic Principles of Electricity

Electrical Current DC (Direct Current) Sources

Basic Principles of Electricity

Simple AC Circuit

Basic Principles of Electricity

Kirchoff's Current Law (KCL)

Basic Principle

Balance

Σ Cars entering $=\Sigma$ Cars leaving

Gars entering:
 370

Cars leaving:

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 40

(
 Basic Principles of Electricity

Kirchoff's Current Law (KCL)

Charges entering

Charges leaving

$$
Q_{\text {out }}=Q_{n}
$$

Balance

$$
\begin{aligned}
& Q_{\text {in }}=Q_{\text {out }} \quad \text { or } \\
& Q_{\text {in }}-Q_{\text {out }}=0 \text { or } \\
& \Sigma Q_{=0}
\end{aligned}
$$

Basic Principles of Electricity

Kirchoff's Current Law (KCL)

Kirchoff's First Law or
 Kirchoffs Current Law

Basic Principles of Electricity

Mechanical Force

Definition

$F=m \times a$
Force needed to accelarate 1 kg of mass to 1 meter / sec^{2} is defined as 1 Newton

1 Newton = 1 kg x 1 meter / sec²
1000 Newton = $1000 \mathrm{~kg} \times 1$ meter / sec ${ }^{2}$
Accelaration $=1 \mathrm{~m} / \mathrm{sec}^{2}$

(
 Basic Principles of Electricity

Mechanical Energy

Definition

1 Joule = 1 Newton $\times 1$ Meter

1 Joule is the energy needed to move a mass 1 meter by using 1 Newton force

Basic Principles of Electricity

Power

Definition

Power is the work done within a certain unit of time, i.e. one second or one hour
Power = Energy / Duration
= 1 Joule $/$ sec

Please note that force (and hence power) of the weak horse shown below is half of the first, but the work done (energy spent) is the same, i.e.
Energy $=2$ seconds x 0.5 Newton x 1 meter

Energy = 1 Joule, Power = 1 Joule / sec.

Energy = 1 Joule, Power = 1 Joule / 2 sec.

Basic Principles of Electricity

Mechanical Energy vs Electrical Energy

Fquivalance

The same amount of energy may be spent out by using electricity
Mechanical Energy = Electrical Energy
Mechanical Work = Electrical Work

Mechanical Energy (Work) = 1 Joule

Current (I)

Electrical Energy (Work) = 1 Joule

Basic Principles of Electricity

Electrical Power

Definition

Similar to mechanical power, electrical power is the work done within a certain unit of time, i.e. one second or one hour Elecrical Power = Electrical Energy / Duration
= 1 Joule / sec

Current (I)

Electrical Power = 1 Joule $/$ sec.

Basic Principles of Electricity

Equivalence of Mechanical and Electrical Powers

Equivalance

Mechanical Power = Electrical Power

Mechanical Power = 1 Joule $/$ sec.
(1 sec)

Current (I)

Electrical Power = 1 Joule $/$ sec.

Basic Principles of Electricity

Electrical Power

Definition

1 Joule / second = 1 Watt (1 Joule energy is spent within 1 second)

1 Joule = 1 Watt x second
1 Horse Power = 746 Watts
$=0.746 \mathrm{kWatt}$

1 Joule / sec = 1 Watt

Current (I)

Electrical Power = 1 Joule / sec. = 1 Watt

Basic Principles of Electricity

Electrical Power

Definition

Power = Voltage x Current

$$
\begin{array}{cccc}
P & =V & x & I \\
(\text { Watt }) & =(\text { Volt }) & \times(\text { Amp })
\end{array}
$$

Current (Amp)

Basic Principles of Electricity

Voltage

Definition

$$
\begin{gathered}
\text { Power }=\text { Voltage } \times \text { Current } \\
\text { or } \\
P=V \times I
\end{gathered}
$$

Voltage = Power / Current

$$
\begin{gathered}
\text { or } \\
V=P / I
\end{gathered}
$$

Current

Basic Principles of Electricity

Voltage

Definition

Power = Voltage x Current

 orVoltage = Power / Current

$$
\begin{gathered}
\text { or } \\
V=P / I
\end{gathered}
$$

1 Volt = 1 Watt / 1 Amp

Basic Principles of Electricity

Electrical Energy

Definition

Energy = Power x Time (Watt-sec) (Watt) (second)

Current (I)

DC Voltage (V)

Energy = Power x Time

Basic Principles of Electricity

Unit of Electrical Energy

Definition

1 KiloWatt = 1000 Watts
1 Hour = 3600 seconds

Energy = Power x Time (Watt-sec) (Watt) (second)
Energy = Power x Time (KiloWatt-hour) (KiloWatt) (hour)

x 1000

1 KiloWatt - hour $=1000 \times 3600$ Watt \times seconds $=3600000$ Joules

Current (I)

Energy = Power x Time

Basic Principles of Electricity

Electrical Energy

Example

Calculate the monthly payment for the energy consumed by the lamp shown on the RHS
Source voltage is 220 Volt
Current drawn by the lamp is 5 Amp
Price of electrical energy is 12 Cents / kWh

$$
\begin{aligned}
\text { Power } & =\text { Voltage } \times \text { Current } \\
P & =V \times I \\
P & =220 \times 5=1100 \text { Watts } \\
\text { Energy } & =P \times \Delta t \\
& =1100 \text { Watts } \times(24 \text { hours /day } \times 30 \text { days/month }) \\
& =792000 \text { Watt hours }=790.2 \mathrm{kWh}
\end{aligned}
$$

Monthly payment $=790.2 \times 12$ Cents $/$ month

$$
\text { = 90.504 USD = } 122.1 \text { YTL / month }
$$

Basic Principles of Electricity

Alternative Definition of Voltage

1 Volt

$$
\begin{aligned}
& =1 \text { Watt } / 1 \text { Amp } \\
& =(1 \text { Joule } / \mathrm{sec}) / 1 \text { Amp } \\
& =1 \text { Joule } /(1 \text { Amp x sec }) \\
& =1 \text { Joule } / 1 \text { Coulomb (") }
\end{aligned}
$$

() Remember that $1 \mathrm{Amp}=1$ Coulomb $/ 1 \mathrm{sec}$

1 Volt is the voltage needed;

- to move 1 Coulomb of electrical charge,
- to spend 1 Joule of energy for this movement in a conductor

Basic Principles of Electricity

Alternative Definition of Voltage

1 Volt = 1 Joule $/ 1$ Coulomb

Please note that time parameter does not appear in the above equation, implying that it is arbitrary
Case-1
Let $\mathrm{t}=1 \mathrm{sec}$
Then, $\mathrm{I}=1$ Coulomb $/ 1 \mathrm{sec}=1 \mathrm{Amp}$
$P=V \times I=1$ Volt $\times 1$ Amp $=1$ Watt
Energy = P x t = (1 Joule $/ \mathrm{sec}) \mathrm{x}$ sec = 1 Joule
Case-2
Let now $\mathrm{t}=2 \mathrm{sec}$
Then, $I=1$ Coulomb $/ 2 \mathrm{sec}=0.5 \mathrm{Amp}$
P = V x I = 1 Volt x 0.5 Amp $=0.5$ Watt
= Energy $/ 2=0.5$ Joule / sec
Energy $=$ P x t = $0.5 \times 2=1$ Joule again

(
 Basic Principles of Electricity

Resistance

Definition

Resistance is the

 reaction of a pipe against water flow

Basic Principles of Electricity

Resistance

Definition

Resistance is the reaction of a conductor against electrical current

Resistance R_{1} Current l_{1}

Resistance R_{2} Current l_{1}

$$
R_{1}>R_{2} \quad I_{1}<I_{2}
$$

(
 Basic Principles of Electricity

Ohm Law

Basic Principles

Current flowing in the circuit is;

- proportional to voltage,
- inversely proportional to resistance

Hence

Unit of resistance is Ohm
1 Ohm is the resistance that allows 1 Amper
to pass at 1 Volts voltage;
1 Ohm = 1 Volt / 1 Amper
$\underset{\text { (Volt) }}{\boldsymbol{V}} \underset{\text { (Ohm) }}{=} \boldsymbol{R} \quad \underset{\text { (Amp) }}{\boldsymbol{R}}$

Basic Principles of Electricity

Ohm Law

Two circuits with different Resistances, identical voltage sources

$$
R_{1}>R_{2}
$$

Current (I_{1})

Current (I_{2})

(
 Basic Principles of Electricity

Ohm Law
 V-I Characteristics

Basic Principles of Electricity

Ohm Law - Example

Question

Calculate the current flowing in the circuit shown on the RHS

V	$R \quad \mathrm{x}$
(Volt)	= (Ohm) x (Amp)
I	$=V / R$
	= $220 / 5$ = 44 Amps

1.5 k ohm, $1 / 8$ watt

Basic Principles of Electricity

Ohm Law Nonlinear V-I Characteristics

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 64

0
 Basic Principles of Electricity

Resistance Formula

Resistance Formula

ACSR Conductor
(Aluminum Conductor Steel Reinforced)

$$
R=\rho \ell / A
$$

Basic Principles of Electricity

Resistance Formula

Resistance Formula

Resistance of a cable is proportional to the length and inversely proportional to the cross sectional area of the cable

$$
R=\rho l / A
$$

where, R is the resistance of conductor,
ρ is the resistivity coefficient,

$$
\rho=1 / 56 \text { Ohm-mm²/m (Copper) }
$$

$1 / 32 \mathrm{Ohm}-\mathrm{mm}^{2} / \mathrm{m}$ (Aluminum)
$l(m)$ is the length of the conductor
A $\left(\mathrm{mm}^{2}\right)$ is the cross sectional area of the conductor

(
 Basic Principles of Electricity

Resistance Formula

Resistance Formula

Aluminum Conductors

Example

Calculate the resistance of a copper cable with length 3200 meters and cross section $240 \mathrm{~mm}^{2}$

Solution

$$
\begin{aligned}
R & =(1 / 56) 3200 / 240 \\
& =0.2380 \mathrm{hms}
\end{aligned}
$$

All Aluminium Conductors (AAC)

Aluminium Conductors Steel Reinforced (ACSR)
All Aluminium Alloy Conductors (AAAC)
Tam Alşmil Aluminyum lietkenier (AAAC)

0,6-1 kV Aluminium Cables

OPGW
Composite Fiber Optic Overhead Ground Wir
Steel Wire Rope

(
 Basic Principles of Electricity

Resistance Formula

Resistance Formula

Example

Calculate the resistance of a copper cable with length 3200 meters and cross section $240 \mathrm{~mm}^{2}$

Solution

$R=(1 / 56) 3200 / 240=0.238$ Ohms

ACSR Conductor
(Aluminum Conductor Steel Reinforced)

Basic Principles of Electricity

Resistivity Coefficients of Various Metals

Formula

Resistivity Coefficients

$\rho=1 / 56$ Ohms/meter (Copper)
 $=0.01785710 \mathrm{hm}-\mathrm{mm}^{2} / \mathrm{m}$

$$
R=\rho l / A
$$

where, R is the resistance of conductor, ρ is the resistivity coefficient, $\rho=1 / 56 \mathrm{Ohm}-\mathrm{mm}^{2} / \mathrm{m}$ (Copper) $1 / 32 \mathrm{Ohm}-\mathrm{mm}^{2} / \mathrm{m}$ (Aluminum)
$l(m)$ is the length of the conductor
A (mm^{2}) is the cross sectional area of the conductor

Material	Resistivity Coefficient	Resistance
Ohm-mm²/m	Ohms/feet	
Silver	0.0162	0.00094
Copper	0.0172	0.00099
Gold	0.0244	0.00114
Aluminum	0.0282	0.00164
Mercury	0.9580	
Brass	0.0700	0.00406
Nickel	0.7800	0.00452
Iron	0.1000	0.00579
Platinium	0.1000	0.00579
Steel	0.1180	0.00684
Lead	0.2200	0.01270

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 69

Basic Principles of Electricity

Color Codes for Resistances

Rule

Basic Principles of Electricity

Insulator

Insulator

Insulator is a material with almost infinite resistance

Insulators are used to support HV lines and conductors

In practice, all materials have resistances. Hence, they conduct a certain amount of current when a voltage is applied to the terminals.
Insulator are materials that conduct only a very small amount of current, even when an extremely high voltage is applied to the terminals.

(
 Basic Principles of Electricity

Power dissipation in a Resistance

$$
\begin{array}{cccc}
V & =\boldsymbol{R} & x & I \\
(\text { Volt }) & =(\text { Ohm }) & (\text { Amp })
\end{array}
$$

On the other hand, it was shown in this lecture that;

Power = Voltage x Current

$$
\begin{gathered}
o r \\
P=V_{x} I
\end{gathered}
$$

Hence, power dissipation in resistance R is

$$
\begin{aligned}
\text { Power } & =R \times I_{x} I \\
& =R_{x} I^{2} \quad \text { Watt }
\end{aligned}
$$

(
 Basic Principles of Electricity

Series Connected Resistances

Equivalent Resistance Formula

$$
\begin{aligned}
& R_{1}=\rho l_{1} / A_{1} \\
& R_{2}=\rho l_{2} / A_{2} \\
& \text { Let } A_{1}=A_{2}
\end{aligned}
$$

Hence;

$$
l_{\text {total }}=l_{1}+l_{2}
$$

$$
\begin{aligned}
R_{\text {total }} & =\rho l_{\text {total }} / A \\
& =\rho\left(l_{1}+l_{2}\right) / A \\
& =\rho l_{1} / A+\rho l_{2} / A \\
& =R_{1}+R_{2}
\end{aligned}
$$

(
 Basic Principles of Electricity

Series Connected Resistances

Equivalent Resistance Formula

$$
R_{\text {total }}=R_{1}+R_{2}
$$

Series connected resistances are added

$$
\begin{array}{ccc}
R_{1} \quad R_{2} & R_{k} \\
-M M _M L & -M M _
\end{array}
$$

(1)
 Basic Principles of Electricity

Ohm Law for Series Resistances

Basic Principles of Electricity

Ohm Law for Series Resistances

Current I (Amp)

$$
\begin{aligned}
V & =\boldsymbol{R}_{1} \times I+\boldsymbol{R}_{2} \times I \\
(\text { Volt }) & \\
& =V_{1}+V_{2}
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 76

Basic Principles of Electricity

Admittance

Definition

Inverse of resistance is called "Admittance"

$$
g=1 / R
$$

(Siemens) (1/Ohm)
Unit of "Admittance" is Siemens
Gxample
Calculate the admittance of $10 \mathrm{k} \Omega$ resistance shown on the RHS
$g=1 / 10^{4}=10^{-4}$ Siemens

10k ohm, $1 / 2$ watt

150k ohm, $1 / 4$ watt

$1.5 \mathrm{kohm}, 1 / 8$ watt

Basic Principles of Electricity

Shunt Connected Resistances

Equivalent Resistance Formula

Basic Principles of Electricity

Shunt Connected Resistances

Equivalent Resistance Formula

Hence,

Basic Principles of Electricity

Shunt Connected Resistances

Example

$V=V_{T}$	
$\mathrm{R}_{1}=10 \mathrm{hm}$	$\xrightarrow{\mathrm{I}_{1}}$
$\mathrm{R}_{2}=2 \mathrm{hms}$	$\xrightarrow{\mathrm{I}_{2}}$
$\mathrm{R}_{\mathrm{k}}=4 \mathrm{Ohms}$	I_{k}

Find the equivalent resistance of the following connection

1

$$
\begin{aligned}
& R_{\text {equiv }}=\text {---------------------------- } \\
& 1 / 1+1 / 2+1 / 4 \\
& =1 /(7 / 4)=4 / 7=0.5714 \mathrm{Ohm}
\end{aligned}
$$

(
 Basic Principles of Electricity

Shunt Connected Resistances

Example

or

1

$$
\begin{aligned}
& 1 / g_{\text {equiv }}=---------\quad-\quad-\quad- \\
& g_{1}+g_{2}+\ldots+g_{k}
\end{aligned}
$$

$$
\begin{aligned}
g_{\text {equiv }} & =g_{1}+g_{2}+g_{3} \\
& =1 / 1+1 / 2+1 / 4 \\
& =7 / 4 \\
& =1.75 \text { Siemens }
\end{aligned}
$$

Basic Principles of Electricity

Voltages on Series Connected Elements

Voltages on series connected elements are added

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 82

Basic Principles of Electricity

Voltages on Series Connected Elements

Voltages on series connected elements are added

$$
\underset{(\text { Volt })}{V}=\underset{(\text { Volt })}{V}+\ldots+\underset{\text { (Volt })}{V_{1}}+\underset{n}{V_{n-1}}
$$

$$
\begin{aligned}
V= & \sum_{i=1}^{i=n-1} V_{i} \\
V_{n}= & \sum_{i=1}^{i=n-1} V_{i}=0 \\
& \sum_{i=n}^{i=n} V_{i}=0
\end{aligned}
$$

Basic Principles of Electricity

Kirchoff's Voltage Law (KVL)

Statement

The above result may be expressed as;
Sum of voltages in a closed loop is zero
or

$$
\sum_{i=1}^{i=n} V_{i}=0
$$

Kirchoff's Second Law or

Kirchoff's Voltage Law

Basic Principles of Electricity

Kirchoff's Voltage Law (KVL)

Gxample

$$
\sum_{i=1}^{i=n} V_{i}=0
$$

$V_{s}=220$ Volts
$V_{s}-V_{1}-V_{2}=0$
$220-100-120=0$

Current I (Amp)

(
 Basic Principles of Electricity

Kirchoff's Voltage Law (KVL)

Simple Rules

Head (pinpoint) of the arrow is negative, Tail of the arrow is positive
This current is assigned such a direction that it always enters from the ' + ' side of the resistance

(
 Basic Principles of Electricity

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Choose a ground node,
- Assume that current I flows clockwise,
- Starting from the ground node, assign " + " and "." signs to those passive elements (i.e. those elements other than source) in such a direction that the current enters to " + " side and the leaves from the "-" side,
- Assign " + " sign to the that side of the source from which current is leaving

(
 Basic Principles of Electricity

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Then write down the voltages on each element by using Ohm Law on a path in a clockwise direction,
- Assign "+" sign to those voltage terms in the equation that you pass from "." to "+",
- Assign "-" sign to those voltage terms in the equation that you pass from "+" to "-",
- Stop and equate it to zero when you come again to the ground node that you have started
Example;

$$
+V_{s}-V_{1}-V_{2}=0 \rightarrow V_{s}=V_{1}+V_{2}
$$

Basic Principles of Electricity

Summary of Kirchoff's Laws

Kirchoff's Current Law (KCL)

Kirchoff's Voltage Law (KVL)

Algebraic sum of currents entering a junction is zero

Algebraic sum of voltages in a closed loop is zero

$$
\sum_{i=1}^{i=n} V_{i}=0
$$

Current I (Amp)

Basic Principles of Electricity

Voltage Division Principle

$$
\begin{aligned}
& V_{1}=R_{1} \times l \\
& V_{2}=R_{2} \times l \\
& \cdots \\
& v_{k}=R_{k} \times l
\end{aligned}
$$

$$
\begin{aligned}
& V_{s}=V_{1}+V_{2}+\ldots V_{k} \\
&=\left(R_{1}+\ldots+R_{k}\right) \times I \\
& V_{k} / V_{s}=R_{k} /\left(R_{1}+\ldots+R_{k}\right)
\end{aligned}
$$

Voltage Division Ratio =

$$
R_{1}+\ldots+R_{k}
$$

Input Voltage
Current I

Basic Principles of Electricity

Potentiometer (Voltage Divider)

Principle

Input voltage is divided and a certain fraction is given to the output

$$
v_{k}=\frac{R_{k}}{R_{1}+\ldots+R_{k}} v_{s}
$$

Division Ratio $=$
R_{k}
$R_{1}+\ldots+R_{k}$
Current I

Basic Principles of Electricity

Potentiometer (Voltage Divider)

Circuit Arrangement

Rotary Potentiometer

Division Ratio =

$$
R_{1}+\ldots+R_{k}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 92

Basic Principles of Electricity

Current Division Principle

$$
\begin{aligned}
& V_{T} \times g_{1}=I_{1} \\
& V_{T} \times g_{2}=I_{2} \\
& V_{T} \times g_{k}=I_{k} \\
& +
\end{aligned}
$$

$$
\begin{aligned}
& V_{T}\left(g_{1}+\ldots g_{k}\right)=I_{1}+\ldots I_{k} \\
& \text { or } \\
& V_{T}\left(g_{1}+\ldots g_{k}\right)=I_{S} \\
& I_{k} / l_{s}=g_{k} /\left(g_{1}+\ldots+g_{k}\right) \\
& g_{k} \\
& \text { Division Ratio = } \\
& +\quad V=V_{T}
\end{aligned}
$$

Basic Principles of Electricity

Voltage Sources

Definition

Voltage source is an element which creates a voltage difference at its terminals
$+\quad V=24$ Volts

A simple Rule:

Current is assigned such a direction that it always leaves the ' + ' side of the voltage or current source.

Basic Principles of Electricity

Ideal Voltage Source

Definition

An ideal voltage source is the one that the terminal voltage does not change with the current drawn
An ideal voltage source has zero internal resistance

Basic Principles of Electricity

Non-Ideal (Real) Voltage Sources

Definition

A voltage source always has an internal resistance R connected in series with the source

Writing down KVL for the above cct;

$$
V_{S}-\Delta V-V_{T}=0
$$

or

$$
V_{T}=V_{s}-\Delta V
$$

where,

$$
\Delta V=R \times I
$$

is called "internal voltage drop"
Terminal voltage V_{T} is reduced by ΔV

Basic Principles of Electricity

Non-Ideal (Real) Voltage Sources

Definition

Writing down KVL for the above cct;

$$
\begin{aligned}
V_{T} & =V_{s}-\Delta V \\
& =V s-R x I
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 97

Basic Principles of Electricity

Ideal Current Source

Definition

Ideal Gurrent Source

An ideal current source is an element providing a constant current from its terminals

Basic Principles of Electricity

Non-Ideal (Real) Current Source

Definition

Non-Ideal Gurrent Source

A non ideal current source is an element with a current depending on terminal voltage

Terminal Current I_{I}

$I_{T}=I_{S}-\Delta I$
$I_{T}=I_{S}-g x V_{T}$

Current Source I_{s}

Basic Principles of Electricity

Non-Ideal (Real) Current Source

Definition: Non-Ideal Gurrent Source

A non ideal current source is an element with a current depending on terminal voltage

Non-Ideal Current Source

Terminal Current I_{I}

$$
\begin{aligned}
& I_{T}=I_{S}-\Delta I \\
& I_{T}=I_{S}-g \times V_{T}
\end{aligned}
$$

(
 Basic Principles of Electricity

Controlled (Dependent) Sources

Definition: Controlled Sources

Voltage Controlled Current Source

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Current $I_{s}=A V_{x}$ A = Amplification coefficient

(1)
 Basic Principles of Electricity

Controlled (Dependent) Sources

Definition: Controlled Sources

Current Controlled Current Source

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Current $I_{s}=A I_{x}$

Current Controlled
Current Source

(
 Basic Principles of Electricity

Controlled (Dependent) Sources

Definition: Controlled Sources

Voltage Controlled Voltage Source

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Voltage $V_{s}=A V_{x}$

(
 Basic Principles of Electricity

Controlled (Dependent) Sources

Definition: Controlled Sources

Current Controlled Voltage Source

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Voltage $V_{s}=A I_{x}$

(
 Basic Principles of Electricity

Example

Question

Current Controlled Voltage Source

Solve the circuit on the RHS for current I_{x}

Solution

Write down KVL;
$V_{s}-10-2 I_{x}=0$
$10 I_{x}-10-2 I_{x}=0$
$8 I_{x}=10 \rightarrow I_{x}=10 / 8=1.25 \mathrm{Amp}$

Basic Principles of Electricity

Measuring Devices - Ammeter

An ammeter is a measuring instrument used to measure the flow of electric current in a circuit. Electric currents are measured in amperes, hence the name The word "ammeter" is commonly misspelled or mispronounced as "ampmeter" by some
The earliest design is the D'Arsonval galvanometer. It uses magnetic deflection, where current passing through a coil causes the coil to move in a magnetic field The voltage drop across the coil is kept to a minimum to minimize resistance in any
 circuit into which the meter is inserted

Basic Principles of Electricity

Measuring Devices - Ammeter

Ampere - Volt - Ohm (AVO)Meter

An ammeter is always series connected in the circuit measured

Battery

Lamp

(1)
 Basic Principles of Electricity

Measuring Devices - Ammeter

An ammeter is always series connected in the circuit measured

Basic Principles of Electricity

Ideal Ammeter

Definition

An ideal ammeter is the one with zero internal resistance (Short Circuit)

- An ideal ammeter behaves as a short circuit, i.e. $R_{\text {amp }} \cong 0$.
- An ideal ammeter has zero resistance so that the measured current is not influenced

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

Basic Principles of Electricity

Ideal Ammeter

An ammeter should not influence the current measured

$$
\begin{aligned}
& I=V_{s} /\left(R+R_{\text {amp }}\right) \\
& R_{\text {amp }} \cong 0
\end{aligned}
$$

Hence,

$$
I=V_{s} /\left(R+R_{\text {amp }}\right) \cong V_{s} / R
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 110

Basic Principles of Electricity

Non-Ideal (Real) Ammeter

Definition

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

A real (non-ideal) ammeter has always an internal resistance in series

- A non ideal ammeter behaves as a series resistance with: $R_{\text {amp }} \neq 0$
- Hence the the measured current is influenced (reduced)

$$
\left.\begin{array}{l}
I_{\text {load }}=V_{s} /\left(R+R_{\text {amp }}\right) \\
I_{\text {load }}=V_{s} / R
\end{array}\right\} \rightarrow I_{\text {load }}<I_{\text {ideal }}
$$

Basic Principles of Electricity

Measuring Devices - Clamp Ammeter

The Need for Clamp Ammeter

Sometimes the electrical service carried out by the circuit may be so vital that it can not be interrupted by breaking the line for a series connection of the ammeter

Ammeter shown on the RHS is a particular design for such circuits to measure current flowing in the circuit as well as resistance without braeaking the circuit

Basic Principles of Electricity

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current
An ideal voltmeter has a very large resistance so that the the circuit in which it has been placed is not disturbed
An ideal voltmeter is an open circuit
However, no voltmeter can ever be ideal, and therefore all voltmeters draw some small current

Voltmeter is always parallel connected to the terminals measured

(
 Basic Principles of Electricity

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current

A voltmeter is always shunt (parallel) connected in the circuit that it measures

Measured voltage;

$$
\begin{array}{lc}
V_{0}=V_{s} & R_{L} \\
& --R_{1}+R_{L}
\end{array}
$$

Basic Principles of Electricity

Ideal Voltmeter

Definition

An ideal voltmeter is the one with infinite internal resistance (Open circuit)

An ideal voltmeter has a very large resistance, $R_{m} \cong \infty$. i.e. it behaves as an open circuit, so that the the measured circuit is not influenced However, no voltmeter can ever be ideal,
 and therefore all voltmeters draw some current
A real voltmeter has a certain internal resistance so that it passes a certain current

(
 Basic Principles of Electricity

Ideal Voltmeter

No voltmeter can ever be ideal, and therefore all voltmeters draw some current.

$$
\begin{aligned}
& R_{m} \cong \infty \quad \text { i.e. } \quad R_{m} \gg R_{L} \\
& I_{m} \ll I_{\text {Load }} \\
& I_{\text {Source }}=I_{\text {Load }}+I_{m} \cong I_{\text {Load }} \\
& \begin{aligned}
V_{0} & =R_{L}\left(I_{\text {source }}-I_{m}\right) \\
& =R_{L} I_{\text {Source }}-R_{L} I_{m} \\
& \cong R_{L} I_{\text {Source }}
\end{aligned} \underbrace{}
\end{aligned}
$$

Negligible

Basic Principles of Electricity

Example

Problem

Ideal Voltmeter

$$
I_{m} \cong 0
$$

Calculate the internal admittance g_{m} of a voltmeter, if it reads 11.81 Volts when connected to a 0.48 mA current source with an internal admittance of $\mathrm{g}_{\mathrm{s}}=4 \times 10^{-5}$ Siemens

$$
\text { Siemens }=1 / \Omega
$$

Basic Principles of Electricity

Example

Problem

Ideal Voltmeter

$$
I_{\mathrm{m}} \cong 0
$$

$R_{s}=1 / g_{s}=1 /\left(4 \times 10^{-5}\right)$ Siemens

$$
=10^{5} / 4=25 \mathrm{k} \Omega
$$

$I_{s} \times R_{\text {eq }}=V_{\text {read }}=11.81$ Volts Hence,

$$
\begin{aligned}
R_{\text {eq }}=V_{\text {read }} / I_{s} & =11.81 /\left(0.48 \times 10^{-3}\right) \\
& =24607.17 \Omega
\end{aligned}
$$

$R_{\text {eq }}=R_{s} / / R_{m}$
Hence,

$$
R_{\mathrm{eq}}=\left(R_{\mathrm{s}} \times R_{m}\right) /\left(R_{\mathrm{s}}+R_{m}\right)=24607.17 \Omega
$$

$$
R m=155.39 \mathrm{M} \Omega
$$

Basic Principles of Electricity

Advanced Measuring Devices

Power Quality Analyzer

GÜC KALITESI ANALIZÖRÜ

Fluke 43Basic Fluke 43B Fluke 43Kit

Power Quality Analyzer Power Quality Analyzer
Power Quality Analyzer

Basic Principles of Electricity

Wheatstone Bridge

The Wheatstone Bridge is an electrical circuit used to determine an unknown resistance R_{x} by adjusting the values of known resistances, so that the current measured in the line connecting the terminals C and D is zero

(
 Basic Principles of Electricity

Wheatstone Bridge

Principle

Adjust the resistances $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}$ and R_{b} such that the ammeter connected between the terminals C and D reads zero current

Hence, the voltage difference between the terminals C and D is zero

$$
\begin{gathered}
\Delta V_{C D}=0 \\
\text { or } \\
V_{C}=V_{D}
\end{gathered}
$$

Basic Principles of Electricity

Wheatstone Bridge

Principle

$V_{c}=V_{D}$
$V_{c}=V_{s} R_{b} /\left(R_{x}+R_{b}\right)$
$V_{D}=V_{s} R_{2} /\left(R_{1}+R_{2}\right)$
$V_{s} R_{b} /\left(R_{\mathrm{x}}+R_{b}\right)=V_{s} R_{2} /\left(R_{1}+R_{2}\right)$
or
$R_{b} /\left(R_{x}+R_{b}\right)=R_{2} /\left(R_{1}+R_{2}\right)$
$R_{b}\left(R_{1}+R_{2}\right)=R_{2}\left(R_{x}+R_{b}\right)$
$R_{b} R_{1}+R_{b} \cdot R_{2}^{\prime}=R_{2} R_{x}+R_{a} \cdot R_{b}^{\prime \prime}$
Or

$$
R_{x}=R_{b} \times R_{1} / R_{2}
$$

(
 Basic Principles of Electricity

Wheatstone Bridge

Basic Rule

Cross multiplication branch resistances must be equal at balance condition

$$
R_{x} \times R_{2}=R_{b} \times R_{1}
$$

Please note that voltage V_{s}. is neither used, nor needed in the above equation, i.e. its value is arbitrary

(
 Basic Principles of Electricity

Wheatstone Bridge

Example

Calculate the value of unknown resistance R_{x} in the balanced Wheatstone Bridge shown on the RHS

Cross multiplication of branch resistances must be equal at balance condition:

$$
\begin{aligned}
R_{x} & \times R_{2}=R_{b} \times R_{1} \\
R_{x} & =R_{b} \times R_{1} / R_{2} \\
& =100 \times 100 / 20=5000 \mathrm{hm}
\end{aligned}
$$

Basic Principles of Electricity

Switch - Circuit Breaker

Switch or Circuit Breaker

Closed "On"

Switch or circuit breaker is a device used to open an electrical circuit manually or automatically by an electronic relay system

Switch

Basic Principles of Electricity

Meaning of "Open" and "Closed" (Highly Important)

Basic Principles of Electricity

Thermal-Magnetic Circuit Breaker

220 Volt, 63 Amp. Thermal-Magnetic (Molded-Case) Breaker

"Closed Switch (On)" does NOT mean that there is no voltage (current) in the circuit!

Basic Principles of Electricity

Medium Voltage (36 kV) Vacuum Circuit Breaker

Basic Principles of Electricity
 METU

Did everbody understand the Basic Principles of Electricity ?

