Circuit Analysis

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 1

Circuit Analysis

What is an Electrical Circuit ?

Definition

An electrical circuit is a set of various system elements connected in a certain way, through which electrical current can pass

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 2

Circuit Analysis

Thevenin Equivalent of an Electrical Circuit

Definition

"Thevenin Equivalent" of an electrical circuit is the simplified form of the circuit consisting of a voltage source in series with a resistance.

Given Circuit

Thevenin Equivalent Circuit

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 3

Circuit Analysis

Calculation of Thevenin Equivalent of a Circuit

Method

1. Open circuit the terminals $\mathrm{A}-\mathrm{B}$ of the given circuit,
2. Calculate the open circuit voltage $V_{A B}$ seen at the terminals A and B,
3. Remove (kill) all the sources in the circuit,
4. Calculate the equivalent resistance $R_{A B}=R_{\text {equiv }}$ seen at the terminals A and B

Given Circuit

Thevenin Equivalent Circuit

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 4

Circuit Analysis

Calculation of the Thevenin Equivalent Voltage $\mathbf{V}_{\text {equiv }}$

1. Open circuit the the terminals A-B,
2. Calculate the open circuit voltage V_{oc} seen at the terminals A-B

Given Circuit

Simplified Circuit

Circuit Analysis

Calculation of the Thevenin Equivalent Voltage $\mathbf{V}_{\text {equiv }}$

2. Calculate the voltage open circuit V_{oc} between the terminals A-B

Alternative Representation of the Circuit

Circuit Analysis

3. Remove (kill) all the sources in the given circuit

Meaning of "Killing Voltage Source":
(a) Short Circuit all voltage sources

A very Important Rule:
Controlled (dependent) sources cannot be killed.

If you do, the result will be incorrect !
Hence, a circuit with these types of sources can NOT be simplified by using the Thevenin Equivalencing Method

Circuit with Voltage Source

Voltage Source Killed

Circuit Analysis

Calculation of Thevenin Equivalent Resistance $\mathbf{R}_{\text {equiv }}$

3. Remove (kill) all the sources in the given circuit

Meaning of "Killing Current Source": (b) Open Circuit all current sources

An Important Rule:

Controlled (dependent) sources cannot be killed.
If you do, the result will be incorrect!
Hence, a circuit with these types of sources can NOT be simplified by using the Thevenin Equivalencing Method

A Circuit with Current Source

Current Source Killed

Circuit Analysis

Calculation of Thevenin Equivalent Resistance $\mathbf{R}_{\text {equiv }}$

3. Kill all the sources in the given circuit,
4. Calculate the equivalent resistance
$R_{A B}$ seen from the terminals A and B

Given Circuit

Calculate $R_{\text {equiv }}$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 9

Circuit Analysis

Calculation of Thevenin Equivalent Resistance $\mathbf{R}_{\text {equiv }}$

4. Perform simplifications on the resulting circuit in order to find $\mathrm{R}_{\text {equiv. }}$
$\frac{R_{3} \times R_{4}}{R_{3}+R_{4}}$

Circuit Analysis

Calculation of Thevenin Equivalent Resistance $\mathbf{R}_{\text {equiv }}$

4. Perform simplifications on the resulting circuit in order to find $\mathrm{R}_{\text {equiv. }}$

$$
\begin{aligned}
R_{\text {equiv }}= & \left(\left(R_{3} / / R_{4}\right)+R_{1}\right) / / R_{2} \\
= & \left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right) / / R_{2} \\
= & \left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right) \times R_{2} \\
& \left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right)+R_{2}
\end{aligned}
$$

Circuit Analysis

Resulting Thevenin Equivalent Circuit

$$
R_{\text {equiv }}=\frac{\left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right) \times R_{2}}{\left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right)+R_{2}}
$$

$$
\begin{aligned}
& R_{2} \\
& V_{0 C}=----------------R_{1}--V_{s} \\
& R_{1}+R_{2}+\left(R_{3} / / R_{4}\right)
\end{aligned}
$$

Circuit Analysis

Example

Example

Determine the "Thevenin Equivalent" of the circuit shown on the RHS

Galculation of $R_{\text {equiv }}$

$$
\begin{aligned}
& R_{\text {equiv }}=\left(R_{3} / / R_{4}+R_{1}\right) / / R_{2} \\
& =\left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right) / / R_{2} \\
& \left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right) \times R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(R_{3} \times R_{4}\right) /\left(R_{3}+R_{4}\right)+R_{1}\right)+R_{2} \\
& =\frac{(2.2222+2) \times 4}{(2.2222+2)+4}=\frac{16.8888}{-\infty .22222}=2.054 \mathrm{Ohm}
\end{aligned}
$$

Circuit Analysis

Example

Gxample

Circuit Analysis

Example

Resulting Thevenin Equivalent Circuit

Circuit Analysis

Determination of the Thevenin Equivalent Circuit by using Open and Short Circuit Tests

Procedure

a) Short circuit the terminals A and B and measure $I_{s c}$
b) Open circuit the terminals A and B and measure V_{OC}

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 16

Circuit Analysis

Short Circuit Test

Objective

The main objective of Short Circuit Test is to determine the current $I_{\text {sc }}$ flowing when the terminals A and B are shorted

Procedure

a) Short circuit the terminals A and B of the given circuit, b) Measure the current I_{sc} flowing through the short circuit

Circuit Analysis

Open Circuit Test

Objective

The main objective of Open Circuit Test is to determine the voltage at the terminals A and B when these terminals are open circuited

Procedure

a) Open circuit the terminals of the given circuit,
b) Measure the voltage V_{OC} between the terminals A and B of the given circuit

Circuit Analysis

Determination of the Thevenin Equivalent Circuit by using Open and Short Circuit Tests

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Example

Calculate the value of the unknown resistance R_{x} in the unbalanced Wheatstone Bridge shown on the RHS, if the current read by the ammeter is 5 Amp.

Since 5 Amp passes through the ammeter, the bridge is unbalanced, hence, cross multiplication of branches are not equal

Please note that the bridge is unbalanced, i.e. current flows in the ammeter

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

First, take out the ammeter and 50 Ohm resistance connected to terminals C and D

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Determine the Thevenin Equivalent of the source side of the circuit, i.e. the rest of the circuit after the ammeter and 50 Ohm resistance are taken out

1. Kill all the sources in the given circuit

Meaning of the The Term: "Killing
Sources"
Means Short Circuiting the voltage source in the circuit on the RHS

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Determine the Thevenin Equivalent of the source side of the circuit, i.e. rest of the circuit after the ammeter and 50 Ohm resistance are taken out
2. Calculate the equivalent resistance of the rest of the circuit

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Determine the Thevenin Equivalent of the source side of the circuit, i.e. the rest of the circuit after the ammeter and 50 Ohm resistance are taken out
2. Calculate the equivalent resistance of the rest of the circuit

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Determine the Thevenin Equivalent of the source side of the circuit, i.e. the rest of the circuit after the ammeter and 50 Ohm resistance are taken out

$$
\begin{aligned}
R_{\mathrm{eq}} & =R_{\mathrm{eq} 1}+R_{\mathrm{eq} 2} \\
& =\left(R_{x} / / R_{b}\right)+\left(R_{1} / / R_{2}\right) \\
& =\left(R_{x} \times 100\right) /\left(R_{x}+100\right)+(100 \times 20) /(100+20)
\end{aligned}
$$

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Voltage

Determine the Thevenin Equivalent of the source side of the circuit, i.e. the rest of the circuit after the ammeter and 50 Ohm resistance are taken out
2. Restore back the source,
3. Open circuit the terminals C and D and calculate the Thevenin Equivalent Voltage

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Voltage

Determine the Thevenin Equivalent of the source side of the circuit, i.e. the rest of the circuit after the ammeter and 50 Ohm resistance are taken out
2. Restore back the source,
3. Open circuit the terminals C and D and calculate the Thevenin Equivalent Voltage
$V_{c}=100 V \times 100 /\left(100+R_{x}\right)$
$V_{D}=100 \mathrm{~V} \times 20 /(100+20)$
$V_{O C}=V_{C}-V_{D}=100\left(100 /\left(100+R_{x}\right)-100 / 6\right)$

Circuit Analysis

Example 1. Unbalanced Wheatstone Bridge

Solution

Draw the Thevenin Equivalent Circuit

$$
V_{O C}=V_{C}-V_{D}=100\left(100 /\left(100+R_{x}\right)-100 / 6\right)
$$

$$
R_{e q}=\left(R_{x} \times 100\right) /\left(100+R_{x}\right)+100 / 6
$$

$$
I=V_{O C} /\left(R_{\text {eq }}+500 \mathrm{hm}\right)
$$

$$
\left.=\left(100(100)\left(100+R_{x}\right)-100 / 6\right)\right) /\left(R_{\mathrm{eq}}+50\right)
$$

$$
=5 \mathrm{Amp}
$$

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Example

Calculate the source voltage V_{s} by using the Thevenin Equivalent Circuit of the unbalanced Wheatstone Bridge shown on the RHS

Since the bridge is unbalanced, cross multiplication of branches are NOT equal, hence 5 Amp passes through the ammeter

Please note that the bridge is unbalanced, i.e. current flows in the ammmeter

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Resistance

First, find the Thevenin Equivalent Resistance of the circuit other than the 50Ω resistance in the middle of the Bridge

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 31

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent

 Resistance

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 32

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Resistance

$$
\begin{aligned}
R_{\text {Thev. }} & =\left(R_{\mathrm{a}} / / R_{\mathrm{b}}\right)+\left(R_{1} / / R_{2}\right) \\
& =(50 / / 100)+(100 / / 20) \\
& =33.333+16.667=50 \Omega
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 33

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Voltage

Now, find the Thevenin Equivalent Voltage at the terminals C and D

1. Put back the source,
2. Open circuit the terminals C and D,
3. Calculate the Thevenin Equivalent Voltage at the terminals C and D

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Voltage

Now, find the Thevenin Equivalent Voltage at the terminals C and D

1. Put back the source,
2. Open circuit the terminals C and D,
3. Calculate the Thevenin Equivalent Voltage at the terminals C and D
$V_{c}=V_{s} 100 /(100+50)=(2 / 3) V_{s}$
$V_{D}=V_{s} \times 20 /(100+20)=(2 / 12) V_{s}=V_{s} / 6$
$V_{O C}=V_{C}-V_{D}=V_{s}(2 / 3-1 / 6)=V_{s} / 2$ Volts

Circuit Analysis

Example 2. Unbalanced Wheatstone Bridge

Solution

Thevenin Equivalent Circuit

Now connect the resulting Thevenin Equivalent Resistance and Thevenin Equivalent Voltage Source

$$
\begin{aligned}
I & =\left(V_{s} / 2\right) /(50+500 \mathrm{hm}) \\
& =\left(V_{s} / 2\right) / 100=V_{s} / 200 \\
& =5 \mathrm{Amp}
\end{aligned}
$$

Solve this eq for V_{s} Vs $=1000$ Volts

Circuit Analysis

Norton Equivalent Circuit

Thevenin Equivalent Circuit can be converted to an alternative form with a current source $\mathrm{I}_{\text {equiv }}$ in parallel with an admittance $\mathrm{G}_{\text {equiv, }}$ called; "Norton Equivalent Circuit" or simply "Norton Form"

Thevenin Equivalent Circuit
Norton Equivalent Circuit

Circuit Analysis

Determination of Norton Equivalent Circuit Parameters

- Divide $\mathrm{V}_{\text {equiv }}$ by $\mathrm{R}_{\text {equiv }}$ find $\mathrm{I}_{\text {equivs }}$
- Replace $\mathrm{V}_{\text {equiv }}$ by $\mathrm{l}_{\text {equive }}$
- Calculate $\mathrm{G}_{\text {equiv }}$ as the reciprocal of $R_{\text {equiv, }}$
- Connect $\mathrm{G}_{\text {equiv }}$ in parallel with $\mathrm{I}_{\text {equiv }}$

Thevenin Equivalent Circuit

Norton Equivalent Circuit

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page

Circuit Analysis

Example

Question

Determine the Norton Equivalent of the Thevenin Equivalent Circuit shown on the RHS

Solution

$$
\begin{aligned}
& l_{\text {equiv. }}=120 / 20=6 \mathrm{Amp} \\
& G_{\text {equiv. }}=1 / R_{\text {equiv. }}=1 / 20=0.05 \text { Siemens }
\end{aligned}
$$

Thevenin Equivalent Circuit

Norton Equivalent Circuit

Circuit Analysis

Current Injection Model

Norton equivalent current may be regarded as a current injected from outside, i.e. from the ground node, to the circuit at node A

Norton Equivalent Circuit
Current Injection Model

"Injected Current"

Circuit Analysis

Maximum Power Transfer Condition

Question:

Determine the value of the resistance in the following circuit in order to transfer maximum power from the source side to the load side

Solution: First simplify the circuit to its Thevenin Equivalent Form as shown on the RHS

Given Circuit

Thevenin Equivalent Circuit

Circuit Analysis

Maximum Power Transfer Condition

Solution: Two Extreme Cases;

Thevenin Equivalent Circuit

Case-1 (Resistance is short circuited)

$$
R_{L}=0
$$

In this case the load power will be zero since;

$$
\begin{aligned}
P & =R_{L} \times l^{2} \\
& =R_{L} \times\left(V_{\text {equiv }} /\left(R_{\text {equii }}+0\right)\right)^{2} \\
& =0 \times\left(V_{\text {equiv }} / R_{\text {equiv }}\right)^{2}=0
\end{aligned}
$$

Case - 2 (Resistance is open circuited)

$$
R_{L}=\infty
$$

In this case the load power will again tend to be zero since;

$$
\begin{aligned}
P & =\infty_{x} I^{2} \\
& =\infty_{\times}\left(V_{\text {equiv }} /\left(\infty+R_{\text {equiv }}\right)\right)^{2}=0
\end{aligned}
$$

Circuit Analysis

Mathematical Fact

Mathematical Fact

A function passing through zero at two distinct points possesses at least one extremum point in the region enclosed by these points

Graphical Illustration

Circuit Analysis

Maximum Power Transfer Condition

Graphical Representation

Thevenin Equivalent Circuit

$$
P=R_{L} \times l^{2}=R_{L} \times\left(V_{\text {equiv }} /\left(R_{\text {equiv }}+R_{L}\right)\right)^{2}
$$

Circuit Analysis

Maximum Power Transfer Condition

Solution: Then maximize; $P=R_{L} /{ }^{2}$
$P=R_{L} I^{2}$
$r^{2}=\left(V_{\text {eq }} / R_{\text {total }}\right)^{2}=\left(V_{\text {eq }} /\left(R_{\text {eq }}+R_{L}\right)\right)^{2}$
Hence,

$$
\begin{aligned}
P & =R_{L}\left(V_{\mathrm{eq}} /\left(R_{\mathrm{eq}}+R_{L}\right)\right)^{2} \\
& =V_{\mathrm{eq}}{ }^{2} R_{L} /\left(R_{\mathrm{eq}}+R_{L}\right)^{2}
\end{aligned}
$$

Now, maximize P wrt R_{L}, by differentiating P with respect to R_{L}
$d P / d R_{L}=0$
$\mathrm{d} / \mathrm{d}\left(R_{L} V_{e q}{ }^{2} R_{L} /\left(R_{e q}+R_{L}\right)^{2}\right)=0$
$V_{e q}{ }^{2}\left[\left(R_{e q}+R_{L}\right)^{2}-2\left(R_{e q}+R_{L}\right) R_{L}\right] / d^{2}$ enom $^{2}=0$
where, denom $=\left(R_{\text {eq }}+R_{L}\right)^{2}$
or

$$
\begin{gathered}
\left(R_{e q}+R_{L}\right)^{2}-2\left(R_{e q}+R_{L}\right) R_{L}=0 \\
R_{e q}=R_{L}
\end{gathered}
$$

Thevenin Equivalent Circuit

Conclusion:

For maximum power transfer, load resistance R_{L} must be equal to the Thevenin Equivalent Resistance of the simpliffed circuit

$$
R_{\mathrm{eq}}=R_{L}
$$

Circuit Analysis

Maximum Power Transfer Condition

Why do we need Maximum Power?
 Shanghai Maglev Train (World's Fastest Train)

Maximum power means

 maximum performance and maximum benefit by using the same equipment, and investment.in other words, maximum speed, or maximum force, or maximum heating, or maximum illumination or maximum performance by using the same equipment, the same weight, and the same investment

Circuit Analysis

Node (Junction)

Definition

A node is a point at which two or more branches are connected

Basic Rule

Currents entering a node obey Kirchoff's Current Law (KCL)

$$
\begin{aligned}
& i=n \\
& \sum_{i=1} I_{i}=0
\end{aligned}
$$

Circuit Representation of Node (Junction)

Power System Representation of Node (Junction)

Circuit Analysis

Ground Node (Earth Point)

Definition

Ground Node is the point (junction) at which the voltage is assumed to be zero
All other voltages takes their references with respect to this ground node

Representation
Ground Node

Circuit Analysis

Ground Node (Earth Point)

Definition

Ground Node is the point (junction) at which the voltage is assumed to be zero
All other voltages takes their references with respect to this ground node

Circuit Analysis

What do we mean by Solution of an Electrical System?

Solution of an electrical system means calculation of all node voltages

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 50

Circuit Analysis

Node Voltage Method

Procedure

1. Select one of the nodes in the system as the reference (usually the ground node), where voltage is assumed to be zero,
2. Convert Thevenin Equivalent circuits into Norton Equivalent circuits by;

- Converting source resistances in series with the voltage sources to admittances in parallel with the current sources (injected currents)
$g_{s}=1 / R_{s}$
- Converting voltage sources to equivalent current sources, i.e. to equivalent current sources in parallel with admittances,

$$
I_{s}=V_{s} / R_{s}=V_{s} g_{s}
$$

Circuit Analysis

Node Voltage Method

Procedure (Continued)

3. Assign number to each node,
4. Assign zero to ground node, as node the number,
5. Assign voltages $\mathrm{V}_{1}, \ldots \mathrm{~V}_{\mathrm{n}-1}$ to all nodes except the ground (reference),
6. Set the voltage at the ground node to zero, i.e. $\mathrm{V}_{0}=0$,

Please note that all these points form a single node

Circuit Analysis

Node Voltage Method

Procedure (Continued)

7. Assign current directions in all branches. (Define the direction of currents in the branches connected to the ground node as always flowing towards the ground),
8. Write-down branch currents in terms of the node numbers at the sending and receiving ends, where the sending and receiving ends are defined with respect to the current directions as defined above and as shown below,

$$
\begin{aligned}
& I_{1-2}=\left(V_{1}-V_{2}\right) / R_{12}=\left(V_{1}-V_{2}\right) g_{12} \\
& I_{1-0}=\left(V_{1}-V_{0}\right) / R_{10}=V_{1} g_{10} \\
& I_{1-0 s}=\left(V_{1}-V_{0}\right) / R_{S}=V_{1} g_{s} \\
& I_{2-0}=\left(V_{2}-V_{0}\right) / R_{20}=V_{2} g_{20}
\end{aligned}
$$

Circuit Analysis

Node Voltage Method

Procedure (Continued)

9. Express branch currents in terms of the voltages at the sending and receiving ends by using Ohm's Law, except those flowing in the current sources (They are already known)

$$
\begin{aligned}
& I_{1-2}=\left(V_{1}-V_{2}\right) / R_{12}=\left(V_{1}-V_{2}\right) g_{12} \\
& I_{1-0}=\left(V_{1}-V_{0}\right) / R_{10}=V_{1} g_{10} \\
& I_{1-0 s}=\left(V_{1}-V_{0}\right) / R_{S}=V_{1} g_{s} \\
& I_{2-0}=\left(V_{2}-V_{0}\right) / R_{20}=V_{2} g_{20}
\end{aligned}
$$

Circuit Analysis

Node Voltage Method

Procedure (Continued)

10. Write down KCL at all nodes except the ground (reference) node. (Do not write KCL equation for the ground node !)

Please note that there are only two unknown voltages, i.e. V_{1} and V_{2} Hence, KCL equations must be written only at these nodes, i.e. at nodes 1 and node 2

$$
\begin{aligned}
& I_{s}=I_{1-0 s}+I_{1-0}+I_{1-2} \\
& I_{1-2}=I_{2-0}
\end{aligned}
$$

Number of nodes $=N=3$ Number of equations $=\mathbf{N}-1=2$

Circuit Analysis

Node Voltage Method

Procedure (Continued)

$I_{s}=I_{1-0 s}+I_{1-0}+I_{1-2}$
$I_{1-2}=I_{2-0}$
11. Now, substitute the voltage terms into the above equations;

$$
\begin{aligned}
& I_{s}=V_{s} / R_{s}=V_{s} g_{s} \\
& I_{1-0 s}=\left(V_{1}-V_{0}\right) / R_{s}=V_{1} g_{s} \\
& I_{1-0}=\left(V_{1}-V_{0}\right) / R_{10}=V_{1} g_{10} \\
& I_{1-2}=\left(V_{1}-V_{2}\right) / R_{12}=\left(V_{1}-V_{2}\right) g_{12} \\
& I_{2-0}=\left(V_{2}-V_{0}\right) / R_{20}=V_{2} g_{20}
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 56

Circuit Analysis

Node Voltage Method

Procedure (Continued)

Nodal Equations (Two equations vs two unknowns)
V_{1} and V_{2} are unknows, all other are knowns

Circuit Analysis

Node Voltage Method

Procedure (Continued)

or, rearranging;

$V_{1} g_{s}+V_{1} g_{10}+\left(V_{1}-V_{2}\right) g_{12}=V_{s} g_{s}$
$-\left(V_{1}-V_{2}\right) g_{12}+V_{2} g_{20}=0$

Nodal Equations

$\left[\begin{array}{c:c}g_{s}+g_{10}+g_{12} & -g_{12} \\ \hdashline-g_{12} & g_{12}+g_{20}\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}v_{s} g_{s} \\ 0\end{array}\right]$

Circuit Analysis

Node Voltage Method

Procedure (Continued)

$\left.\begin{array}{l:c}g_{s}+g_{10}+g_{12} & -g_{12} \\ \hdashline-g_{12} & g_{12}+g_{20}\end{array}\right]\left[\begin{array}{l} \\ \hdashline \cdots\end{array}\right.$

Nodal admittance matrix
Voltage (Unknown) vector
Injected Current (Known) (RHS) vector
9. Solve the resulting nodal equations for node voltages

Circuit Analysis

A Simple Rule for Forming Nodal Admittance Matrix

Rule

1
$\left.\begin{array}{l:l}g_{s}+g_{10}+g_{12} & -g_{12} \\ \hdashline-g_{12} & \ldots \ldots \ldots \ldots \ldots \ldots \\ g_{12}+g_{20}\end{array}\right] \quad$ Symmetrical

- Find the admittances of the branches in the circuit by calculating the inverse of resistances;

$$
g_{12}=1 / R_{12}
$$

- Put the summation of admittances of those branches connected to the i-th node to the i-th diagonal element of the nodal admittance matrix
- Put the negative of the admittance of the branch connected between the nodes i and j to the $\mathrm{i}-\mathrm{j} \mathrm{jh}$ and j-ith element of the nodal admittance matrix

Circuit Analysis

A Simple Rule for Forming Node Voltage Vector

Rules

- Write down the unknown node voltages in this vector in sequence starting from 1 to n -1 (i.e. exclude
 the voltage of the reference node. Voltage of the reference node is assumed to be zero)

Circuit Analysis

A Simple Rule for Forming Current Injection Matrix

- Write down the injected currents in this vector,
- Write down $=\left\{\begin{array}{l} \\ V_{s} \\ g_{s}\end{array}\right.$ if there is an injection, 0 otherwise

Circuit Analysis

Solution of Nodal Equations

Procedure

$\left.\begin{array}{l:c}g_{s}+g_{10}+g_{12} & -g_{12} \\ \hdashline-g_{12} & g_{12}+g_{20}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]=\left[\begin{array}{l}V_{s} g_{s} \\ 0\end{array}\right]$

Methods for finding the node voltages

Substitution Method

Matrix Methods

Software Packages

Use computer

Write down the above equations as a set of linear equations and solve them by using the known "Substitution and Elimination Technique" seen in the high school

Circuit Analysis

Solution of Nodal Equations

Procedure (Continued)

$\left[\begin{array}{c:c}g_{s}+g_{10}+g_{12} & -g_{12} \\ \hdashline g_{12} & g_{12}+g_{20}\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}v_{s} g_{s} \\ 0\end{array}\right]$

To find the node voltages

Matrix Methods

- Invert the nodal admittance matrix, - Multiply the RHS vector by this inverse

Circuit Analysis

Calculation of Inverse of a 2x2 Matrix

Procedure (Continued)

To find the inverse of a 2×2 matrix

1. First calculate the determinant of the given matrix;

$$
\begin{aligned}
\text { Determinant } & =a_{11} \times a_{22}-a_{21} \times a_{12} \\
& =d
\end{aligned}
$$

Circuit Analysis

Calculation of Inverse of a 2x2 Matrix

Procedure (Continued)

To find the inverse of 2×2 matrix
2. Then, calculate the co-factor matrix. To calculate the a_{11} element of the co-factor matrix;

- Delete the $1^{\text {st }}$ row and $1^{\text {st }}$ column of the matrix,
- Write down the remaining element a_{22} in the diagonal position: 2,2, where the deleted row and column intercepts,

Circuit Analysis

Calculation of Inverse of a 2x2 Matrix

Procedure (Continued)

To find the inverse of 2×2 matrix

- Perform the sam procedure for the next element a_{12} in the matrix
- Repeat this procedure for all elements in A .

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 67

Circuit Analysis

Calculation of Inverse of a 2x2 Matrix

Procedure (Continued)

To find the inverse of 2×2 matrix

- Set the sign of the i-jth element in the co-factor matrix such that;

$$
\checkmark \text { sign }=\left\{\begin{array}{l}
+1 \text { when } i+j \text { is even } \\
-1 \text { otherwise }
\end{array}\right.
$$

- Transpose the resulting matrix

Circuit Analysis

Calculation of Inverse of a 2x2 Matrix

Procedure (Continued)

To find the inverse of 2×2 matrix
3. Finally, divide the resulting transposed co-factor matrix by the determinant

RESULT: Inverse of the given matrix

$$
\left[\begin{array}{c:c}
a_{11} / d & a_{12} / d \\
\hdashline-a_{21} / d & a_{22} / d
\end{array}\right]
$$

Circuit Analysis

Example

Find the Inverse of the Matrix given on the RHS

1. First calculate the determinant of the given matrix; Determinant $=1 \times 6-2 \times 4=-2$

Circuit Analysis

Example (Continued)

Procedure (Continued)

To find the inverse of 2×2 matrix
2. Then, calculate the co-factor matrix. To calculate the a_{11} element of the co-factor matrix;

- Delete the $1^{\text {st }}$ row and $1^{\text {st }}$ column of the matrix,
- Write down the remaining element a_{22} in the diagonal position: 2,2, where the deleted row and column intercepts,

Circuit Analysis

Example (Continued)

Procedure (Continued)

To find the inverse of 2×2 matrix

- Perform the sam procedure for the next element a_{12} in the matrix
- Repeat this procedure for all elements in A .

Circuit Analysis

Example (Continued)

Procedure (Continued)

To find the inverse of 2×2 matrix

- Set the sign of the i-j ${ }^{\text {th }}$ element in the co-factor matrix such that;
$\left[\begin{array}{c:c}6 & -2 \\ -4 & 1\end{array}\right]$

Transpose the resulting matrix

Circuit Analysis

Example (Continued)

Procedure (Continued)

To find the inverse of 2×2 matrix
3. Finally, divide the resulting transposed co-factor matrix by the determinant

RESULT: Inverse of the given matrix

Circuit Analysis

Solution of Large - Size Systems

Procedure

Suppose that we want to solve the three-bus system shown on the RHS for node voltages

Nodal equations for this system may be written as follows
$\left[\begin{array}{c:c:c}G_{11} & G_{12} & G_{13} \\ \hdashline G_{21} & G_{22} & G_{23} \\ \hdashline G_{31} & G_{32} & G_{33}\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]=\left[\begin{array}{l}V_{S 1} g_{s 1} \\ V_{S 2} g_{s 2} \\ V_{s 3} g_{s 3}\end{array}\right]$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOǦLU, Page 75

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

Hence, we must find the inverse of the coefficient matrix G

To find the inverse of 3×3 matrix

1. First calculate the determinant of the matrix;

- For that purpose, first augment the given matrix by the "first two."." columns of the same matrix from the RHS
- Then, multiply the terms on the main diagonal

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

- Then, multiply the terms on the other (cross) diagonal

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 77

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

- Then, subtract the latter three multiplications from those found in the former

Determinant of $\mathrm{A}=\mathrm{Sum}_{2}-$ Sum $_{1}$

Circuit Analysis

Calculation of Inverse of a 3×3 Matrix

Procedure (Continued)

1. Then, calculate the co-factor matrix. To calculate the $\mathrm{a}_{i j}{ }^{\text {th }}$ element of the co-factor matrix;

- Delete the i the row and j the column of the matrix,
- Calculate the determinant $c_{i j}$ of the remaining 2×2 submatrix by using the method
 given earlier for 2×2 matrices

Circuit Analysis

Calculation of Inverse of a 3×3 Matrix

Procedure (Continued)

- Repeat this procedure for all elements in the matrix

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

- Write down these determinants in the corresponding locations,
- Set the sign of these elements such that;

$$
\checkmark \quad \text { sign }=\left\{\begin{array}{l}
+1 \text { when } i+j \text { is even } \\
-1 \text { otherwise }
\end{array}\right.
$$

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

2. Then, transpose the resulting cofactor matrix
$\left[\begin{array}{ccc}c_{11} & -c_{12} & c_{13} \\ -c_{21} & c_{22} & -c_{23} \\ c_{31} & -c_{32} & c_{33}\end{array}\right]$
$\left[\begin{array}{ccc}c_{11} & -c_{21} & c_{31} \\ -c_{12} & c_{22} & -c_{32} \\ c_{13} & -c_{23} & c_{33}\end{array}\right]$

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

3. Finally, divide the resulting transposed co-factor matrix by the determinant

$\left[\begin{array}{ccc}1 \\ d \\ c_{11} & -c_{21} & c_{31} \\ -c_{12} & c_{22} & -c_{32} \\ c_{13} & -c_{23} & c_{33}\end{array}\right]$
Determinant
$\left[\begin{array}{ccc}c_{11} / d & -c_{21} / d & c_{31} / d \\ -c_{12} / d & c_{22} / d & -c_{32} / d \\ c_{13} / d & -c_{23} / d & c_{33} / d\end{array}\right]$

Circuit Analysis

Example

Example

Find the inverse of the coefficient matrix given on the RHS

- Then, multiply the terms on the main diagonal

Circuit Analysis

Example

Procedure (Continued)

- Then, multiply the terms on the other (cross) diagonal

Circuit Analysis

Example

Procedure (Continued)

- Then, subtract the latter three multiplications from those found in the former

Determinant of $A=-16-140=-156$

Circuit Analysis

Example

Procedure (Continued)

1. Then, calculate the co-factor matrix. To calculate the $\mathrm{a}_{i j}{ }^{\text {th }}$ element of the co-factor matrix;

- Delete the i the row and j the column of the matrix,
- Calculate the determinant $c_{i j}$ of the remaining 2×2 submatrix by using the method given earlier for 2×2 matrices

Circuit Analysis

Calculation of Inverse of a 3×3 Matrix

Procedure (Continued)

- Repeat this procedure for all elements in the matrix

$$
\begin{aligned}
& \text { Delete this row and } \\
& \text { column } \\
& \hline \text { Calculate the } \\
& \text { determinant of the } \\
& \text { resulting } 2 \times 2 \\
& \text { submatrix: } \\
& 2 \times 2-4 \times(-2)=12 \\
& \hline
\end{aligned}
$$

Circuit Analysis

Calculation of Inverse of a 3x3 Matrix

Procedure (Continued)

- Form the co-factor matrix as shown on the RHS
- Transpose the co-factor matrix (It will not change since it is symmetrical)

$$
=\left[\begin{array}{rrr}
12 & -12 & -36 \\
-12 & -14 & 10 \\
-36 & 10 & 4
\end{array}\right]
$$

Circuit Analysis

Calculation of Inverse of a 3×3 Matrix

Procedure (Continued)

3. Finally, divide the resulting transposed co-factor matrix by the determinant
$\left.=\begin{array}{c}1 \\ -156 \\ -\vdots\end{array}\right]\left[\begin{array}{ccc}12 & -12 & -36 \\ -12 & -14 & 10 \\ -36 & 10 & 4\end{array}\right]$

$=\left[\begin{array}{ccc}-12 / 156 & 12 / 156 & 36 / 156 \\ 12 / 156 & 14 / 156 & -10 / 156 \\ 36 / 156 & -10 / 156 & -4 / 156\end{array}\right]$

Circuit Analysis

Solution Step

Procedure (Continued)

Final step of the solution procedure is the multiplying the RHS vector with the inverse of the nodal admittance matrix

These elements are zero for nodes with no current injection

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Procedure (Continued)

Sometimes we may encounter a voltage source with no series resistance, called; "Pure Voltage Source"

A pure voltage source connecting a node to ground means that the voltage is fixed at this node, (i.e. it is no longer unknown)

A pure voltage source with no series resistance creates problem in the solution procedure, since it cannot be converted to an equivalent Norton Equivalent Circuit, i.e.

$$
V_{s} / R_{s}=V_{s} / 0=\infty
$$

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Procedure (Continued)

Sometimes we may encounter a "Pure Voltage Source" connecting two nodes other than ground.

This means that the voltage difference between these nodes is fixed

A pure voltage source with no series resistance creates problem in the solution procedure, since it cannot be converted to an equivalent Norton Equivalent Circuit, i.e.

$$
V_{s} / R_{s}=V_{s} / 0=\infty
$$

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Procedure (Continued)

In this case, the circuit can be solved as follows

1. Define the current flowing in this voltage source as I_{x}
2. Define this current as a new variable,
3. Write down KCL at each node, except the reference node,
4. Write down the equation for the voltage difference between the terminals of this pure voltage source

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Resulting Nodal Equations

$1 \sum_{i=1} I_{i}\left(\right.$ including $\left.I_{X}\right)=0$
$I_{s}=I_{1-0 s}+I_{1-0}+I_{x}$
$i=n-1$
2
$\sum I_{i}\left(\right.$ including $\left.I_{X}\right)=0$
$i=1$

$$
I_{x}=I_{2-0}+I_{2-3}
$$

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Resulting Nodal Equations

3

$$
\sum_{i=1}^{i=n-1} I_{i}=0
$$

$$
I_{2-3}=I_{3-0}
$$

and finally, writing down the equation for voltage difference across the pure voltage source
$4 V_{1}-V_{2}=120 \mathrm{~V}$

$$
\begin{aligned}
& n=4, k=1 \\
& n-1+k=4 \\
& 4 \text { equations vs } 4 \text { unknowns }
\end{aligned}
$$

This equation spoils the symmetry of the nodal admittance matrix

Circuit Analysis

Nodal Analysis with Pure Voltage Sources

Resulting Equations

$1 \quad V_{1} g_{s}+V_{1} g_{10}+I_{x}-I_{s}=0$
$2 \quad V_{2} g_{20}+\left(V_{2}-V_{3}\right) g_{23}-I_{x}=0$
$3 \quad V_{3} g_{30}+\left(V_{3}-V_{2}\right) g_{23}=0$
Extra Equation $V_{1}-V_{2}=120$ Volts

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOǦLU, Page 97

Circuit Analysis

Nodal Analysis with Controlled Sources

Nodal Analysis with Voltage Controlled Gurrent Sources

Voltage Controlled Current Source: $I_{s}=A V_{x}$
Procedure

- Write down the expression for the current provided by the controlled current source in terms of the node voltage depended: $I_{s}=A V_{1}$
- Include this current in the summation when writing KCL for the node that controlled current source is connected,
- Solve the resulting nodal equations for node voltages

Circuit Analysis

Nodal Analysis with Controlled Sources

Nodal Analysis with Gurrent Controlled Gurrent Sources

Current Controlled Current Source: $I_{s}=A I_{x}$

Procedure

- Write down the expression for the current provided by the controlled current source in terms of current depended: $I_{s}=A I_{1-0}$
- Express the depended current, I_{1-0} and hence I_{S} in terms of node voltages;

$$
I_{S}=A\left(V_{1}-V_{0}\right) / R_{1-0}=A V_{1} g_{1-0}
$$

- Include this current in the summation when writing KCL for node that controlled current is injected,
- Solve the resulting nodal equations for node voltages

Circuit Analysis

Nodal Analysis with Controlled Sources

Nodal Analysis with Gurrent Controlled Voltage Sources

Current Controlled Voltage Source: $V_{s}=A i_{x}$

Procedure

- Write down the expression for the controlled voltage in terms of the current depended: $\quad V_{s}=A I_{1-0}$
- Express the depended current, I_{1-0} and hence V_{S} in terms of the node voltages,
- Convert the resulting voltage source V_{s} to equivalent Norton current source,
- Include this current in the summation when writing KCL for node that that controlled current is injected,
- Solve the resulting nodal equations for node voltages

Circuit Analysis

Nodal Analysis with Controlled Sources

Nodal Analysis with Voltage Controlled Voltage Sources

Voltage Controlled Voltage Source: $V_{s}=A V_{x}$

Procedure

- Write down the expression for the controlled voltage in terms of the voltage depended: $V_{s}=A V_{x}=A V_{1}$
- Convert the resulting voltage source V_{s} to equivalent Norton current source,
- Include this current in the summation when writing KCL for node that controlled current is injected,
- Solve the resulting nodal equations for node voltages

Circuit Analysis

Example

Node Voltage Method with Gontrolled Current Source

Find the power dissipated in the resistance \mathbf{R}_{L} in the following circuit by using the Node Voltage Method

Please note that current controlled current source in the circuit can NOT be killed for finding the Thevenin Equivalent Circuit If you do, the result will be INCORRECT!

Hence, simplification by emploving Thevenin Equivalent Circuit Method is NOT applicable to this problem

Load Resistance

$$
R_{L}=1 \Omega
$$

Circuit Analysis

Example (Continued)

Node Voltage Method with Controlled Gurrent Source

The first step of the solution is to combine the resistances R_{L} and 10 hm yielding a 30 hm resistance, thus eliminating the third node

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 103

Circuit Analysis

Example (Continued)

Node Voltage Method with Controlled Current Source

Now write down KCL equation at Node-1
$8 I_{2-3}-I_{1-0 \mathrm{~s}}-I_{1-0}-I_{1-2}=0$
$I_{1-\mathrm{os}}=V_{1} / 2 \Omega$
$I_{1-0}=V_{1} / 1 \Omega$
$I_{1-2}=\left(V_{1}-V_{2}\right) / 4 \Omega$

Equation - 1

$8 V_{2} / 3-V_{1} / 2-V_{1} / 1-\left(V_{1}-V_{2}\right) / 4=0$
EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAiOĞLU, Page 104

Circuit Analysis

Example (Continued)

Node Voltage Method with Controlled Current Source

Now, write down KCL equation at Node-2
$I_{1-2}-I_{2-0}-I_{2-3}=0$
$I_{1-2}=\left(V_{1}-V_{2}\right) / 4 \Omega$
$I_{2 \cdot 0}=-I_{s 2}=-10 A$
$I_{2-3}=I_{3-0}=V_{2} / 3 \Omega$

Equation - 2

$$
\left(V_{1}-V_{2}\right) / 4-(-10 A m p)-V_{2} / 3=0
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 105

Circuit Analysis

Example (Continued)

Node Voltage Method with Controlled Gurrent Source

Circuit Analysis

Example (Continued)

Node Voltage Method with Controlled Current Source

Now, find the power dissipated in R_{L}

$$
\begin{aligned}
& I_{2 \cdot 3}=60 \mathrm{~V} / 3 \Omega=20 \mathrm{~A} \\
& P=R_{L} I^{2}=1 \times 20^{2}=400 \mathrm{~W}
\end{aligned}
$$

Load Resistance: $R_{L}=1 \Omega$

$$
V_{2}=-60 \text { Volts }
$$

Circuit Analysis

Mesh Current Method

Loop

Definition

A Loop is a closed path of branches followed in clockwise direction that begins from one node and ends again at the same node

Circuit Analysis

Mesh Current Method

Loop

Basic Rule

Loops obey Kirchoff's Voltage Law (KVL)

$$
\begin{gathered}
\sum_{i=1}^{i=n} V_{i}=0 \\
\hline V_{s}-V_{1}-V_{3}=0 \\
V_{3}-V_{2}-V_{4}=0
\end{gathered}
$$

Circuit Analysis

Mesh Current Method

Mesh

Define the mesh currents in each mesh flowing always in clockwise direction

Definition

A Mesh is a loop that does not contain any other loop inside

Circuit Analysis

Mesh Current Method

Mesh

Please note that the path shown by dashed line is NOT a mesh, since it contains some other loops inside

Circuit Analysis

Mesh Current Method

Procedure

1. Determine the meshes and mesh current directions in the circuit by following the rules;

Circuit Analysis

Mesh Current Method

Procedure

2. Define mesh currents in each mesh flowing in the clockwise direction,
3. Convert all current sources with parallel admittances, if any, to equivalent Thevenin voltage sources with series Thevenin equivalent resistances,

Norton Equivalent Circuit

Thevenin Equivalent Circuit

[^0]
Circuit Analysis

Mesh Current Method

Procedure

4. Write down Kirchoff's Voltage Law (KVL) in each mesh in terms of the source voltages, mesh currents and resistances,
5. Solve the resulting equations

Circuit Analysis

Mesh Current Method

Example

$$
R_{13} x\left(-I_{1}\right)+R_{13} x\left(+I_{3}\right)=-R_{13} x\left(I_{1}-I_{3}\right)
$$

Mesh -1

- Start from a certain point in Mesh-1, if possible from the ground node A and follow a closed path in clockwise direction,
- When you pass over a resistance, for instance, over resistance R_{13};
- assign "-" sign to the current, if it is in the same direction as your clockwise direction, i.e. I_{1},
- assign "+" sign to the current, if it opposes your clockwise direction, i.e. I_{3},
- sum up the resulting voltage terms in the mesh

Circuit Analysis

Mesh Current Method

Example

$$
R_{30} \times\left(-I_{2}\right)+R_{30} \times\left(+I_{1}\right)=-R_{30} \times\left(I_{2}-I_{1}\right)
$$

Mesh - 2

- Start from a certain point in Mesh-1, for instance, from point A and follow a path in clockwise direction,
- When you pass over a resistance, for instance, over resistance R_{13};
- assign "-" sign to the current, if it is in the same direction as your clockwise direction, i.e. I_{1},
- assign "+" sign to the current, if it opposes your clockwise direction, i.e. I_{3},
- sum up the resulting voltage terms in the mesh

Circuit Analysis

Mesh Current Method

Gxample

Mesh - 3

- Start from a certain point in Mesh-3, for instance, from point B, and follow a path in clockwise direction,
- When you pass over a resistance, for instance, over resistance R_{13};
- assign "-" sign to the current, if it is in the same direction as your clockwise direction, i.e. I_{3},
- assign "+" sign to the current, if it opposes your closckwise direction, i.e. I 1_{1},
- sum up the resulting voltage terms in the mesh

$-R_{13}\left(I_{3}-I_{1}\right)-R_{12} I_{3}-R_{32}\left(I_{3}-I_{2}\right)=0$

Circuit Analysis

Mesh Current Method

Procedure

Resulting Mesh Equations

Mesh -1 $\quad V_{S 1}-R_{13}\left(I_{1}-I_{3}\right)-R_{30}\left(I_{1}-I_{2}\right)=0$
Mesh -2 $-V_{S 2}-R_{30}\left(I_{2}-I_{1}\right)-R_{32}\left(I_{2}-I_{3}\right)=0$
Mesh $-3 \quad-R_{32}\left(I_{3}-I_{2}\right)-R_{13}\left(I_{3}-I_{1}\right)-R_{12} I_{3}=0$

Circuit Analysis

Mesh Equations in Matrix Form

Resulting Mesh Equations

Mesh - 1

$$
\begin{array}{ll}
\text { Mesh -1 } & V_{S 1}-R_{13}\left(I_{1}-I_{3}\right)-R_{30}\left(I_{1}-I_{2}\right)=0 \\
\hline \text { Mesh -2 }-V_{S 2}-R_{30}\left(I_{2}-I_{1}\right)-R_{32}\left(I_{2}-I_{3}\right)=0
\end{array}
$$

Mesh -3 $R_{32}\left(I_{3}-I_{2}\right)+R_{13}\left(I_{3}-I_{1}\right)+R_{12} I_{3}=0$

$$
\left[\begin{array}{c:c:c}
R_{13}+R_{30} & -R_{30} & -R_{13} \\
\hdashline-R_{30} & R_{32}+R_{30} & -R_{32} \\
\hdashline-R_{13} & -R_{32} & R_{32}+R_{13}+R_{12}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
V_{S 1} \\
-V_{S 2} \\
0
\end{array}\right]
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 119

Circuit Analysis

Mesh Current Method

Procedure

Circuit Analysis

Solution Step

Procedure

These elements are zero for meshes with no voltage source

Final step is the solution of the nodal equations by multiplying the Voltage (RHS) Vector with the inverse of the Mesh Resistance (coefficient) matrix

Circuit Analysis

Rules for Forming Mesh Resistance Matrix

Rules

$\left[\begin{array}{c:c:c}\text { Mesh-1 } & \text { Mesh-2 } & \text { Mesh-3 } \\ R_{13}+R_{30} & -R_{30} & -R_{13} \\ \hdashline-R_{30} & R_{32}+R_{30} & -R_{32} \\ \hdashline-R_{13} & -R_{32} & R_{32}+R_{13}+R_{12}\end{array}\right]$

- Put the summation of the resistances of branches in the $i^{\text {ih }}$ mesh path to the $i^{\text {th }}$ diagonal location in the mesh resistance matrix,
- Put the negative of the resistance of branch which is common to both $\mathrm{i}^{\text {th }}$ and j^{it} meshes to the $(i-j)^{\text {th }}$ location of the mesh resistance matrix

Circuit Analysis

Rules for Forming the Unknown (Mesh Current) Vector

Rules

1
2
3 $\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3}\end{array}\right]$

- Write down the mesh currents in this vector in a sequence starting from 1 to n -1 (i.e. for all meshes in the circuit)

Circuit Analysis

Rules for Forming the known (RHS) Vector

Rul
$2\left[\begin{array}{c}V_{S 1} \\ -V_{S 2} \\ 0\end{array}\right]$

- Write down the source voltages in meshes in this vector, - i-th element in this vector $= \begin{cases}v_{\text {Sit }}+V_{\text {Si2 }}+\ldots & \text { (Sum of the voltage } \\ 0 & \text { sources in the mesh) } \\ \text { otherwise }\end{cases}$

Circuit Analysis

Example - 1

Example

Write down the mesh equations for the circuit shown on the right hand side
Mesh -1 $10-6\left(I_{1}-I_{3}\right)-4\left(I_{1}-I_{2}\right)=0$
Mesh -2 $-4\left(I_{2}-I_{1}\right)-1\left(I_{2}-I_{3}\right)-80=0$

Mesh -3 $-2 I_{3}-6\left(I_{3}-I_{4}\right)-1\left(I_{3}-I_{2}\right)-6\left(I_{3}-I_{1}\right)=0$
Mesh - $4 \quad+80-6\left(I_{4}-I_{3}\right)-7 I_{4}+120=0$

0
 Circuit Analysis

Example - 1

Example

These equations may then be written in matrix form as follows

10	-4	-6		I_{1}		10
-4	5	-1		I_{2}	$=$	-80
-6	-1	15	-6	I_{3}		0
		-6	13	I_{4}		200

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAiOĞLU, Page 126

Circuit Analysis

Example - 2

Mesh Gurrent Method

Find the power dissipated in the load resistance R_{L} by using the Mesh Current Method

Please note that voltage controlled voltage source in the following figure can NOT be killed for finding the Thevenin Equivalent Circuit. If you do, the result will be INCORRECT!
Hence, Thevenin Equivalencing Method is NOT applicable

Load Resistance: $\mathrm{R}_{\mathrm{L}}=1 \Omega$

Circuit Analysis

Example - 2 (Continued)

Mesh Gurrent Method

Northon Equivalent Circuit

Load Resistance: 1Ω

To simplify the circuit, first convert the Northon Equivalent Circuit shown in the shaded area to Thevenin Equivalent Circuit

Circuit Analysis

Example - 2 (Continued)

Mesh Gurrent Method

Thevenin Equivalent Circuit

Load Resistance: 1Ω

To simplify the circuit, further, combine the voltage sources and the 5 Ohm resistances

Circuit Analysis

Example - 2 (Continued)

Mesh Current Method

Now, write down the Mesh Equations

Thevenin Equivalent Circuit
Load Resistance: 1Ω

This part can not be further simplified, by employing Thevenin Equivalencing Method, since it contains a controlled voltage source

Circuit Analysis

Example - 2 (Continued)

Mesh Current Method

Mesh-1
Mesh-2

Further simplifying the circuit

Mesh -1 $5-10 I_{1}-2\left(I_{1}-I_{2}\right)-4 V_{1}=0$

Mesh -2
$4 V_{1}-2\left(I_{2}-I_{1}\right)-(2+1) I_{2}=0$

Extra
$V_{1}=(2+1) I_{2}=3 I_{2}$

Load Resistance: 1Ω

Circuit Analysis

Example - 2 (Continued)

Mesh Gurrent Method

Substituting the Extra Equation into Mesh-1 and Mesh-2 Equations;
Mesh -1

Mesh -2
$7 I_{2}+2 I_{1}=0$

$$
I_{2}=0.15625 \mathrm{Amp}
$$

$$
\begin{aligned}
P_{\text {load }} & =1 \times I_{2}{ }^{2}=0.15625^{2} \\
& =0.02441 \mathrm{~W}=24.41 \mathrm{mWatt}
\end{aligned}
$$

Mesh-1
Mesh-2

Load Resistance: 1Ω

Circuit Analysis

Mesh Analysis with Pure Current Sources

Procedure

Sometimes we may encounter a current source with no parallel admittance, called "Pure Current Source"

A pure current source connecting two nodes without any shunt admittance means that there is fixed difference between the mesh currents involving this current source

A pure current source with no shunt admittance creates problem, since it cannot be converted into an equivalent Thevenin form, i.e.

$$
I_{s} / g_{\text {equiv }}=I_{s} / 0=\infty
$$

Circuit Analysis

Mesh Analysis with Pure Current Sources

Procedure

The circuit is solved as follows

1. Define the voltage across the pure current source as V_{x}
2. Define this voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ as a new variable,
3. Write down KVL for each mesh,
4. Write down the equation for the current difference between the meshes by using this pure current source

Circuit Analysis

Mesh Analysis with Pure Current Sources

$3 \quad \sum_{i=1} V_{i}=0$
$4 \quad I_{2}-I_{1}=2 \mathrm{Amp}$

Circuit Analysis

Mesh Analysis with Pure Current Sources

Resulting Equations

Mesh -1 $\quad V_{S 1}-R_{13}\left(I_{1}-I_{3}\right)-V_{x}=0$

Mesh -2 $-V_{S 2}+V_{x}-R_{32}\left(I_{2}-I_{3}\right)=0$
Mesh - $3 R_{32}\left(I_{3}-I_{2}\right)+R_{13}\left(I_{3}-I_{1}\right)+R_{12} I_{3}=0$
Extra Equation $I_{2}-I_{1}=2 \mathrm{Amp}$

$\left[\begin{array}{c:c:c:c}R_{13} & & -R_{13} & \vdots \\ \hdashline & R_{32} & -R_{32} & -1 \\ \hdashline-R_{13} & -R_{32} & R_{32}+R_{13}+R_{12} & \cdots \cdots \cdots \\ \hdashline-1 & 1 & & \vdots\end{array}\right]\left[\begin{array}{c}I_{1} \\ I_{2} \\ I_{3} \\ V_{x}\end{array}\right]=\left[\begin{array}{r}V_{S 1} \\ -V_{S 2} \\ 0 \\ 2\end{array}\right]$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 136

Circuit Analysis

Supernode

Net current flowing through any crosssection in a circuit is zero

$$
I_{1}+I_{S}+I_{4}-I_{6}=0
$$

or

$$
\sum_{i=1}^{i=n} I_{i}=0
$$

This part (Part-2) may be regarded as a node; "supernode"

This cross-section line may be drawn arbitrarily passing through in any path

The above rule is actually nothing, but Kirchoff's Current Law (KCL)

Circuit Analysis

The Principle of Superposition

Method

- Kill all the sources except one,
- Solve the resulting circuit,
- Restore back the killed source,
- Kill another source,
- Repeate this procedure for all sources,
- Sum up all the solutions found

Circuit Analysis

Example

Find the current I_{2} flowing in resistance R_{2} in the following circuit by using the Principle of Superposition

Kill the current source and solve the resulting cct

Kill the voltage source and solve the resulting cot

Sum up the resulting currents algebraically

$$
I_{2}=I_{a}+I_{b}
$$

Circuit Analysis

Star - Delta Conversion

Formulation

A set of star connected resistances can be converted to a delta connection as shown on the RHS

$$
\begin{aligned}
& \boldsymbol{R}_{\mathrm{ba}}=\left(\boldsymbol{R}_{\mathrm{a}} \boldsymbol{R}_{\mathrm{b}}+\boldsymbol{R}_{\mathrm{b}} \boldsymbol{R}_{\mathrm{c}}+\boldsymbol{R}_{\mathrm{c}} \boldsymbol{R}_{\mathrm{a}}\right) / \boldsymbol{R}_{c} \\
& \boldsymbol{R}_{\mathrm{ac}}=\left(\boldsymbol{R}_{\mathrm{a}} \boldsymbol{R}_{\mathrm{b}}+\boldsymbol{R}_{\mathrm{b}} \boldsymbol{R}_{\mathrm{c}}+\boldsymbol{R}_{\mathrm{c}} \boldsymbol{R}_{\mathrm{a}}\right) / \boldsymbol{R}_{\mathrm{b}} \\
& \boldsymbol{R}_{\mathrm{cb}}=\left(\boldsymbol{R}_{\mathrm{a}} \boldsymbol{R}_{\mathrm{b}}+\boldsymbol{R}_{\mathrm{b}} \boldsymbol{R}_{\mathrm{c}}+\boldsymbol{R}_{\mathrm{c}} \boldsymbol{R}_{\mathrm{a}}\right) / \boldsymbol{R}_{\mathrm{a}}
\end{aligned}
$$

Please note that the neutral node is eliminated by the conversion

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 140

Circuit Analysis

Star - Delta Conversion

In case that the resistances are identical, the delta connection can further be simplified as shown on the RHS

Simplification

$$
\boldsymbol{R}_{\Delta}=\left(\boldsymbol{R}_{Y}^{2}+\boldsymbol{R}_{Y}^{2}+\boldsymbol{R}_{Y}^{2}\right) / \boldsymbol{R}_{Y}=3 \boldsymbol{R}_{Y}
$$

Please note that the neutral
node is eliminated by the conversion

Circuit Analysis

Delta - Star Conversion

Formulation

A set of delta - connected resistances can be converted to a star connection as shown on the RHS

$$
\begin{aligned}
& \boldsymbol{R}_{a}=\boldsymbol{R}_{b a} \boldsymbol{R}_{\mathrm{ac}} /\left(\boldsymbol{R}_{\mathrm{ba}}+\boldsymbol{R}_{\mathrm{ac}}+\boldsymbol{R}_{c b}\right) \\
& \boldsymbol{R}_{b}=\boldsymbol{R}_{\mathrm{cb}} \boldsymbol{R}_{\mathrm{ba}} /\left(\boldsymbol{R}_{\mathrm{ba}}+\boldsymbol{R}_{\mathrm{ac}}+\boldsymbol{R}_{\mathrm{cb}}\right) \\
& \boldsymbol{R}_{c}=\boldsymbol{R}_{a c} \boldsymbol{R}_{c b} /\left(\boldsymbol{R}_{b a}+\boldsymbol{R}_{a c}+\boldsymbol{R}_{c b}\right)
\end{aligned}
$$

Circuit Analysis

Delta - Star Conversion

In case that the resistances are identical, the equivalent star connection can further be simplified to the form shown on the RHS

Simplification

$$
R_{Y}=R_{\Delta}^{2} /\left(R_{\Delta}+R_{\Delta}+R_{\Delta}\right)=R_{\Delta} / 3
$$

b

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 144

[^0]: EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page

