Phasors

Phasors

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 1

Phasors

Vector

Definition

A vector is a magnitude directed in a certain direction (angle)

A vector is shown as

$$
r \angle \theta
$$

where,
r is the magnitude, known as radius, θ is the angle

The above representation is known as "the polar representation" of a vector

Phasors

j Operator

Definition

"j operator" is a vector with unity magnitude, directed in vertical direction, i.e. in 90° angle

$$
j=1 / 90^{\circ}
$$

Complex Number

Definition

Graphical Representation

A complex number is a number with two components;

- Real component (an ordinary number),
- Imaginary component (a number multiplied by the j operator)

$$
a+j b
$$

The above representation is known as
 "the rectangular representation"

Polar Representation of Complex Number

Definition

Graphical Representation

A complex number may be expressed in "polar representation" by employing the following conversion

$$
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\operatorname{Tan}^{-1}(b / a)
\end{aligned}
$$

$$
r \angle \theta
$$

"Polar representation" of a vector

Radius

Phasors

Conversion from Rectangular Representation to Polar Representation

Rule

Graphical Representation

A complex number expressed in rectangular coordinates can be converted into a number expressed in polar coordinates as follows;

Let the complex number expressed in rectangular coordinates be

$$
a+j b
$$

Then

$$
a+j b=r \angle \theta
$$

where,

$$
r=\sqrt{a^{2}+b^{2}} \quad \theta=\operatorname{Tan}^{-1}(b / a)
$$

Phasors

Conversion from Polar Representation to Rectangular Representation

Rule

Graphical Representation

A complex number expressed in polar coordinates can be converted into a number expressed in rectangular coordinates as follows;

Let the complex number expressed in polar (phasor) coordinates be

$$
r \angle \theta
$$

Then

$$
r \angle \theta=a+j b
$$

where,

$$
a=r \cos \theta \quad b=r \sin \theta
$$

Phasors

Polar and Rectangular Representations - Summary

Conversion Rules

Polar Representation

r / θ

Rectangular Representation

$$
\begin{aligned}
& a=r \cos \theta, \quad b=r \sin \theta \\
& r=\sqrt{a^{2}+b^{2}}, \quad \theta=\operatorname{Tan}^{-1}(b / a)
\end{aligned}
$$

$$
a+j b
$$

Phasors

Addition of two Complex Numbers

Method

Isn't there an easier way of doing that ?
Suppose that two phasors are to be added

$$
r_{1} \angle \theta_{1}+r_{2} \angle \theta_{2}=r_{\text {tot }} \angle \theta_{\text {tot }}
$$

- First express the phasors in rectangular coordinates, - and then perform the addition
Polar Representation
$a=r \cos \theta, b=r \sin \theta$
Rectangular Representation
r_{1} / θ_{1} $r_{2} \quad \theta_{2}$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 9

Phasors

Subtraction of two Complex Numbers

Method

I'm afraid NOT !

Suppose that two phasors are to be subtracted

$$
r_{1} \angle \theta_{1}-r_{2} \angle \theta_{2}=r_{\text {tot }} / \theta_{\text {tot }}
$$

- First express the phasors in polar coordinates, - and then perform the subtraction

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 10

Phasors

Multiplication of two Complex Numbers

Method

Suppose that two phasors are to be multiplied

$$
\left(a_{1}+j b_{1}\right) \times\left(a_{2}+j b_{2}\right)=a_{\text {result }}+j b_{\text {result }}
$$

- First express the phasors in polar coordinates,
- and then perform the multiplication

Rectangular Representation

$$
a_{1}+j b_{1}
$$

$$
a_{2}+j b_{2}
$$

$r=\sqrt{a^{2}+b^{2}}, \theta=\operatorname{Tan}^{-1}(b / a)$
.........

Polar Representation

$$
r_{1} \angle \theta_{1}
$$

$$
r_{2} \quad \theta_{2}
$$

$$
r_{1} r_{2} / \theta_{1}+\theta_{2}
$$

$a=r \cos \theta, b=r \sin \theta$

Phasors

Division of two Complex Numbers

Method

Suppose that two phasors are to be divided

$$
\left(a_{1}+j b_{1}\right) /\left(a_{2}+j b_{2}\right)=a_{\text {result }}+j b_{\text {result }}
$$

- First express the phasors in polar coordinates,
- and then perform the division

Rectangular Representation

$$
a_{1}+j b_{1}
$$

$$
a_{2}+j b_{2}
$$

$r=\sqrt{a^{2}+b^{2}}, \theta=\operatorname{Tan}^{-1}(b / a)$
........

Polar Representation
r_{1} / θ_{1}
.........

Phasors

Properties of j Operator

Definition

Multiplication of a complex number by j operator shifts (rotates) the angle of vector by 90°, while the magnitude is unchanged

$$
j=1 \quad \angle 90^{\circ}
$$

Example

Multiply complex number $2 / 60^{\circ}$ by j

$$
\begin{aligned}
2 \angle 60^{\circ} \times j & =2 \angle 60^{\circ} \times 1 \angle 90^{\circ} \\
& =2 \times 1 \angle 60^{\circ}+90^{\circ} \\
& =2 \angle 150^{\circ}
\end{aligned}
$$

$$
2 \times 1 / 90^{\circ}+60^{\circ}=2 / 150^{\circ}
$$

Phasors

Properties of j Operator

Powers of j

$$
\begin{aligned}
& j=1 / 90^{\circ} \\
& j^{2}=1 \angle 90^{\circ} \times 1 \angle 90^{\circ}=1 \angle 180^{\circ}=-1 \\
& j^{3}=1 / 270^{\circ}=1 \angle-90^{\circ}=-j \\
& j^{4}=1 \angle 4 \times 90^{\circ}=1 / 360^{\circ}=1 \\
& 1 / j=1 / 1 / 90^{\circ}=1 \angle-90^{\circ}=-j
\end{aligned}
$$

$$
j^{2}=-1
$$

EZ 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 14

Phasors

Phasors

Euler's Identity

Graphical Representation

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

$$
\begin{aligned}
\left|\mathrm{e}^{j \theta}\right| & =|\cos \theta+j \sin \theta| \\
& =\sqrt{|\cos \theta|^{2}+|\sin \theta|^{2}} \\
& =1
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 15

Phasors

Leonhard EULER
 (1707-1783)

Swiss Mathematician

Leonhard Euler was born in Basel, Switzerland, but the family moved to Riehen when he was one year old and it was in Riehen, not far from Basel, that Leonard was brought up. Paul Euler had, as we have mentioned, some mathematical training and he was able to teach his son elementary mathematics along with other subjects.
Euler made substantial contributions to differential geometry, investigating the theory of surfaces and curvature of surfaces. Many unpublished results by Euler in this area were rediscovered by Gauss. Other geometric investigations led him to fundamental ideas in topology such as the Euler characteristic of a polyhedron.
In 1736 Euler published Mechanica which provided a major advance in mechanics

Phasors

Phasors

Euler's Identity

Graphical Representation

$$
\begin{aligned}
& \hat{V} e^{j \theta}=\hat{V}(\cos \theta+j \sin \theta) \\
& \begin{aligned}
\hat{V}\left|e^{j \theta}\right| & =\hat{V}|\cos \theta+j \sin \theta| \\
& =\hat{V} \sqrt{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =\hat{V}
\end{aligned}
\end{aligned}
$$

Phasors

Phasors

Definition of Basic Terms

Graphical Representation

Now, Let $\boldsymbol{\theta}$ be a linear function of time t , i.e. rotate it clockwise

$$
\begin{aligned}
\theta & =w t \\
w & =2 \pi f \\
& =2 \times \pi \times 50=314 \text { Radians } / \mathrm{sec} \\
(f & =50 \mathrm{~Hz})
\end{aligned}
$$

1 Radian $=360^{\circ} /(2 \pi)=57.29^{\circ}$

Phasors

Phasors

Euler's Identity

Graphical Representation

$$
\begin{aligned}
& e^{j \theta}=\cos \theta+j \sin \theta \\
& \hat{V}_{e}{ }^{j w t}=\hat{V}(\cos w t+j \sin w t)
\end{aligned}
$$

$$
V(t)=\hat{V} \sin \theta
$$

$$
V(t)=\hat{V} \sin \theta=\hat{V} \sin w t
$$

$$
V(t)=\hat{V} \cos \theta
$$

Phasors

Symbolic Representation

Mathematical Notation

Graphical Representation

Now let a phasor be located at an angular position ϕ initially, i.e.

$$
V(t)=\hat{V} \cos (w t+\phi) \mid t=0
$$

In other words the phasor is at an angular position ϕ at $t=0$

The phasor on the RHS is then represented mathematically by the following notations;

$$
\theta=w t_{\mid t=0}+\phi=\phi
$$

$V \sin \theta=V \sin \phi$

V = Magnitude

Initial phase angle $=\phi$

Phasors

Angular Displacement

Total Angular Displacement

Graphical Representation

Total angular displacement at time $\mathrm{t}=\mathrm{t}_{1}$
$\hat{V} \sin \theta=\hat{V} \sin \left(w t_{1}+\phi\right) \quad$ Angle swept during $t=t_{1}$ may then be expresssed as;

$$
\theta\left(t_{1}\right)=w t_{1}+\phi
$$

$$
\text { Initial phase angle = } \phi
$$

Then the horizontal component becomes;

$$
\begin{aligned}
V(t) & =\hat{V} \cos (w t+\phi) \mid t=t_{1} \\
& =\hat{V} \cos \left(w t_{1}+\phi\right)
\end{aligned}
$$

In other words, the phasor will be at an angular position w $t_{1}+\phi$ at $t=t_{1}$

$$
\hat{V} \cos \theta=\hat{V} \cos \left(w t_{1}+\phi\right)
$$

Phasors

Mathematical Notation

Notation

Graphical Representation

The phasor on the RHS may be represented mathematically as;

Phasors

Waveform Representation of Resistive Circuits

Waveform Representation of Resistive Circuits

Consider the resistive circuit shown on the RHS

$$
\begin{aligned}
V(t) & =\hat{V} \cos w t \\
I(t) & =\hat{V}_{s}(t) / R \\
& =\hat{V} \cos w t / R \\
& =\hat{I} \cos w t
\end{aligned}
$$

where,

$$
\hat{I}=\hat{V} / R
$$

Phasors

Phasor Representation of Resistive Circuits

Phasor Representation of Resistive Gircuits

Consider the resistive circuit shown on the RHS

Ohm's Law

Phasor Representation

$$
\begin{aligned}
& v=\hat{v} \angle 0^{\circ} \\
& 1=\hat{I} \angle 0^{\circ}
\end{aligned}
$$

$|Z|=\sqrt{R^{2}}=R$
$\angle \mathrm{Z}=\operatorname{Tan}^{-1}(0 / R)=0$

Phasors

Waveform Representation of Inductive Circuits

$$
l(t)=\hat{I} \sin w t
$$

Waveform Representation of Inductive Circuits

$$
\longrightarrow
$$

Consider the inductive circuit shown on the RHS
Let now,

$$
I(t)=\hat{I} \sin w t
$$

$$
V(t)=L d l(t) / d t=(L w \hat{I}) \cos w t=\hat{V} \cos w t
$$ where,

$$
\hat{V}=L w \hat{I}
$$

$$
\left.\cos \left(w t-90^{\circ}\right)=\operatorname{coswt} \cos 90^{\circ}+\sin w t \sin 90^{\circ}\right)
$$

$$
I(t)=\hat{I} \sin w t=\hat{I} \cos \left(w t-90^{\circ}\right)
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOǦLU, Page 25

Phasors

Phasor Representation of Inductive Circuits

Phasor Representation of Inductive Gircuits

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 26

Phasors

Waveform Representation of Capacitive Circuits

Waveform Representation of Capacitive Circuits

Consider the capacitive circuit shown on the RHS

$$
I(t)=\hat{I} \cos \left(w t+90^{\circ}\right) \longrightarrow
$$

$I(t)=C d V_{s}(t) / d t=-C w V \sin w t$

$$
\hat{I}=C w \hat{V}
$$

Phasors

Phasor Representation of Capacitive Circuits

Phasor Representation of Capacitive Circuits

Waveform Representation

Phasor Representation
$\ldots \quad v=\hat{v} / 0^{\circ}$

Ohm's Law

$$
Z=\frac{\hat{\hat{V} / 0^{\circ}}}{\hat{I} / 90^{\circ}}=Z \angle-90^{\circ}=1 / \mathrm{Cw} /-90^{\circ}
$$

$$
Z=1 / j w C=1 /-90^{\circ} / C w=-j / C w
$$

$$
|z|=\sqrt{R^{2}+(1 / C w)^{2}}=1 / C w
$$

$$
\angle Z=\operatorname{Tan}^{-1}(-C w / 0)=-90^{\circ}
$$

$$
\hat{I}=C w \hat{V}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 28

Phasors

Phasor Representation of AC Circuits

Phasor Representation of R-L Gircuits

Consider the following R-L circuit

$$
\begin{aligned}
& V=\hat{V} \angle 0^{0} \\
& \hline z=R+j w L \\
& |z|=\sqrt{R^{2}+(w L)^{2}} \\
& \angle Z=T_{a n-1}(w L / R)=\theta \\
& I=\hat{V} / 0_{0} /\left(\sqrt{R^{2}+(w L)^{2}} / \theta\right) \\
& =\hat{I} /-\theta \\
& \hat{I}=\hat{V} / \sqrt{R^{2}+(w L)^{2}}
\end{aligned}
$$

$$
R^{2}+(w L)^{2}=Z^{2}
$$

$$
Z=\sqrt{R^{2}+(W L)^{2}} \quad \theta
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 29

Phasors

Phasor Representation of AC Circuits

Phasor Representation of R-C Circuits

Consider the R-C circuit shown below

$$
V=\hat{V} \angle 0^{\circ}
$$

$$
Z=R+(1 / j w C)=R-j(1 / w C)
$$

$$
|z|=\sqrt{R^{2}+(1 / w C)^{2}}
$$

$$
\angle Z=\operatorname{Tan}^{-1}(1 /(w C R))=\theta<0
$$

$$
\begin{gathered}
R^{2}+(1 / w C)^{2}=Z^{2} \\
Z=\sqrt{R^{2}+(1 / w C)^{2}} \angle \theta
\end{gathered}
$$

$$
\begin{aligned}
I & =\hat{V} / 0^{\circ} /\left(\sqrt{R^{2}+(1 / w C)^{2}} / \cdot \theta\right) \\
& =\hat{I}\langle\theta \\
\hat{I} & =\hat{V} / \sqrt{R^{2}+(1 / w C)^{2}}
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 30

Phasors

Phasor Representation of AC Circuit Elements

Resistance

R

$-\mathrm{MW}-$
$|Z|=\sqrt{R^{2}}$
$\angle Z=$ Tan $^{-1}$
$Z=R \angle 0^{\circ}$

R-L Element

R-G Element

$$
X=0
$$

$$
\hat{v}
$$

$$
\begin{aligned}
& |Z|=\sqrt{R^{2}+(w L)^{2}} \\
& \angle Z=\operatorname{Tan}^{-1}(w L / R) \\
& Z=\sqrt{R^{2}+(w L)^{2}} / \operatorname{Tan}^{-1}(w L / R)
\end{aligned}
$$

$$
x>0
$$

$$
\hat{v}
$$

$$
\begin{aligned}
& |Z|=\sqrt{R^{2}+(1 / w C)^{2}} \\
& \angle Z=\operatorname{Tan}^{-1}((1 / w C) / R)
\end{aligned}
$$

$$
Z=\sqrt{R^{2}+(1 / w C)^{2}} /-\operatorname{Tan}^{-1}((1 / w C) / R)
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 31

Phasors

Phasor Representation of R-L-C Circuits

Phasor Representation of R-L-C Circuits

Consider the R-L-C circuit shown on the RHS

$$
\begin{aligned}
& V=\hat{V} \angle 0^{0} \\
& Z=R+j w L-j / w C=R+j(w L-1 / w C) \\
& |z|=\sqrt{R^{2}+(w L-1 / w C)^{2}} \\
& \angle Z=T_{2 n^{-1}}((w L-1 /(w C)) / R)=\theta \\
& I=\hat{V} / 0^{0} /\left(\sqrt{R^{2}+(w L-1 / w C)^{2}} / \theta\right) \\
& =\hat{I} /-\theta \\
& \hat{I}=\hat{V} / \sqrt{R^{2}+(w L-1 / w C)^{2}}
\end{aligned}
$$

$$
1 / j=-j
$$

Ohm's Law: $\hat{I=}=\hat{V} / Z$
EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOǦLU, Page 32

Phasors

Phasor Representation of R-L-C Circuits

R-L-C Circuits

Solve the R-L-C circuit shown on the RHS for current phasor

$$
\begin{aligned}
V & =\hat{V} \angle O^{\circ}=220 \sqrt{2} \angle 0^{\circ} \\
Z & =R+j w L-j / w C=2+j(3.14-1.59) \Omega \\
& =2+j 1.55 \Omega
\end{aligned}
$$

$$
\begin{aligned}
|Z| & =\sqrt{R^{2}+(w L-1 / w C)^{2}}=\sqrt{2^{2}+1.55^{2}} \\
& =2.098 \Omega
\end{aligned}
$$

$$
\angle Z=\operatorname{Tan}^{-1}((w L-1 /(w C)) / R)=\operatorname{Tan}^{-1}(1.55 / 2)=\theta
$$

$$
=17.58^{\circ}
$$

$$
Z=2.098 / 17.58^{\circ} \Omega
$$

$$
\begin{aligned}
w & =2 \pi f=2 \times 3.14 \times 50=314 \mathrm{radians} / \mathrm{sec} \\
X_{L} & =j w L=j 0.01 \times 314=j 3.14 \Omega \\
X_{C} & =1 /(j w C)=-j / w C=-j /\left(314 \times 2 \times 10^{-3}\right) \\
& =-j 1.59 \Omega
\end{aligned}
$$

$$
\theta>0 \text { (Inductive) }
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOǦLU, Page 33

Phasors

Phasor Representation of R-L-C Circuits

Example

Solve the R-L-C circuit shown on the RHS for current phasor

$$
\begin{aligned}
I & =\hat{V} / 0^{0} /\left(\sqrt{R^{2}+(w L-1 / w C)^{2}} \angle \theta\right) \\
& =220 \sqrt{2} / 0^{0} / 2.098 / 17.58^{\circ} \\
& =\hat{I} /-\theta \\
& =148.30 \angle-17.58^{\circ} \mathrm{Amp}
\end{aligned}
$$

Phasors

Phasor Representation of R-L-C Circuits

Example (Continued)

Draw the voltage and current phasors and waveforms

$$
V=220 \sqrt{2} \angle 0^{\circ} \quad \text { Volts (peak) }
$$

$$
I=148.30 /-17.58^{\circ} \text { Amp }
$$

$$
I=148.30 /-17.58^{\circ} A m p
$$

$$
R=2 \Omega \quad L=0.01 H
$$

$$
W M
$$

$$
1000
$$

$I(t)=148.30 \cos \left(w t-17.58^{\circ}\right)$
$\mathrm{V}(\mathrm{t})=220 \sqrt{2} \cos \left(\mathrm{wt}+0^{\circ}\right)$

$$
\phi=0^{\circ}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 35

Phasors

Example

Problem

$$
V=\hat{V} / 0^{\circ}=220 \times \sqrt{2} \angle 0^{\circ} \text { Volts }
$$

$$
V(t)=\hat{V} \cos w t
$$

$$
\begin{aligned}
|Z| & =\sqrt{R^{2}+X^{2}} \\
& =\sqrt{3^{2}+4^{2}}=5 \Omega
\end{aligned}
$$

$$
Z=5 / 53.13^{\circ} \Omega
$$

$$
Z Z=\operatorname{Tan}^{-1}(4 / 3)
$$

$$
=53.13^{\circ}
$$

$$
I=220 \times \sqrt{2} \angle 0^{\circ} / 5 \angle 53.13^{\circ} \mathrm{Amp}
$$

$$
=62.22 /-53.13^{\circ} A m p
$$

Phasors

Example

Problem

Draw the waveforms and phasors for the previous problem

Waveform Representation

$$
\begin{aligned}
V(t) & =\hat{V} \cos w t \\
& =220 \times \sqrt{2} \cos w t
\end{aligned}
$$

$I(t)=62.22 \cos \left(w t-53.13^{\circ}\right)$

Phasor Representation

$$
V=\hat{V} / 0^{\circ}=220 \times \sqrt{2} / 0^{\circ} \text { Volts }
$$

$$
\Leftrightarrow I=62.22 \angle-53.13^{\circ} \quad \text { Amp }
$$

$$
I=62.22 /-53.13^{\circ} \mathrm{Amp}
$$

$$
\begin{aligned}
V_{s} & =\hat{V} / 0^{\circ} \\
= & 220 \times \sqrt{2} / 0^{\circ}
\end{aligned}
$$

Phasors

Example

Calculate the equivalent impedance seen between the terminals A and B of the AC circuit given on the RHS ($\mathbf{w}=314 \mathrm{rad} / \mathrm{sec}$)

First. let us calculate impedances

$$
\begin{aligned}
Z_{C} & =1 /(j w C)=1 /\left(j 314 \times 1 \times 10^{-3}\right) \\
& =-j 3.1847 \Omega \\
Z_{L} & =j w L=j 314 \times 0.01=j 3.14 \Omega
\end{aligned}
$$

$$
\begin{aligned}
Z_{c} / / R_{1} & =1 /\left(1 / Z_{c}+1 / R_{1}\right)=1 /(1 /-j 3.1847+1 / 1) \\
& =1 /(1+j 0.314)=1 /\left(1.04814 / 17.43^{\circ}\right) \\
& =0.9540 /-17.43^{\circ}=0.91019-j 0.285761 \Omega
\end{aligned}
$$

$$
\begin{aligned}
\left(Z_{C} / / R_{1}\right)+Z_{L} & =0.91019-j 0.285761+j 3.14 \\
& =0.91019+j 2.854239 \Omega
\end{aligned}
$$

Phasors

Example (Continued)

(Continued)

Now, let us calculate: $\left(R_{\text {eq }}+j Z_{\text {Leq }}\right) / / R_{2}$

$$
\begin{aligned}
\left(R_{\text {eq }}+j Z_{\text {Leq }}\right) / / R_{2} & =(0.91019+j 2.854239) / / 2 \\
& =2.9958 / 72.310 / / 2 / 0^{0} \\
& =\frac{2.9958 \times 2 / 72.31^{0}}{(0.91019+2)+j 2.854239} \\
& =\frac{5.99160 / 72.310}{4.07685 / 44.44^{\circ}} \\
& =1.46966 / 27.87 \Omega
\end{aligned}
$$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 39

Phasors

Maximum Power Transfer Condition in AC Circuits

Question

Given Circult

Calculate the value of the impedance Z_{L} of the load in the AC circuit shown on the RHS, in order to transfer maximum power from source to load

Load Impedance: $Z_{L}=R_{L}+j X_{L}$

Phasors

Maximum Power Transfer Condition in AC Circuits

Solution

First simplify the AC circuit to its Thevenin Equivalent Form as shown on the RHS

Given Circuit

Thevenin Equivalent Circuit

Phasors

Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

Load Impedance: $\mathbf{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}+j \mathrm{X}_{\mathrm{L}}$
Then the problem reduces to the determination of the load impedance in the simplified circuit shown on the RHS

$$
\begin{aligned}
& P=R_{L} I^{2} \\
& I^{2}=\left(V_{\text {eq. }} / Z_{\text {total }}\right)^{2}=\left(V_{\text {eq }} /\left(Z_{\text {eq. }}+Z_{L}\right)\right)^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
P & =R_{L} V_{\text {eq. }}{ }^{2} /\left(Z_{\text {eqq }}+Z_{L}\right)^{2} \\
& =V_{\text {eq. }}^{2} R_{L} /\left(\left(R_{\text {eq }}+R_{L}\right)^{2}+\left(X_{\text {eq }}+X_{L}\right)^{2}\right)
\end{aligned}
$$

Phasors

Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

Load Impedance: $Z_{L}=R_{L}+j X_{L}$
Let us now first maximize P wrt X_{L} by differentiating P with respect to X_{L}
$d P / d X_{L}=0$
$\mathrm{d} / \mathrm{dX} X_{L} V_{\text {eq. }}{ }^{2} R_{L} /\left(\left(R_{\text {eq. }}+R_{L}\right)^{2}+\left(X_{\text {eq. }}+X_{L}\right)^{2}\right)=0$
or
$V_{\text {eq. }}{ }^{2} R_{L}\left(-2\left(X_{\text {eq. }}+X_{L}\right) /\left[\left(R_{\text {eq. }}+R_{L}\right)^{2}+\left(X_{\text {eq. }}+X_{L}\right)^{2}\right]^{2}=0\right.$
or
$V_{\text {eq. }}{ }^{2} R_{L}\left(-2\left(X_{\text {eq. }}+X_{L}\right)=0\right.$
The above expression becomes zero when;

$$
X_{\text {eq. }}=-X_{L}
$$

Phasors

Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

Load Impedance: $\mathbf{Z}_{\mathrm{L}}=\mathrm{R}_{\mathrm{L}}+\mathrm{j} \mathrm{X}_{\mathrm{L}}$
Hence, power becomes the same as that for the DC case;

$$
P=V_{\text {eq. }}{ }^{2} R_{L} /\left(\left(R_{\text {eq. }}+R_{L}\right)^{2}+\left(X_{\text {eq }}+X_{L}\right)^{2}\right)
$$

$=0$

$$
P=R_{L} V_{\text {eq. }}{ }^{2} /\left(R_{\text {eqq }}+R_{L}\right)^{2}
$$

Phasors

Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

Now, we must maximize P wrt R_{L} by differentiating P with respect to R_{L}

$$
\begin{aligned}
& d P / d R_{L}=0 \\
& d / d R_{L} V_{\text {eq. }}{ }^{2} R_{L} /\left(R_{\text {eq. }}+R_{L}\right)^{2}=0 \\
& V_{\text {eq. }}{ }^{2}\left[\left(R_{\text {eq. }}+R_{L}\right)^{2}-2\left(R_{\text {eq. }}+R_{L}\right) V_{\text {eq. }}{ }^{2} R_{L}\right] / d^{2}=0 \\
& \text { where, } d=\left(R_{\text {eq. }}+R_{L}\right)^{2} \\
& \text { or } \\
& V_{\text {eq. }}{ }^{2}\left[\left(R_{\text {eq. }}+R_{L}\right)^{2}-2\left(R_{\text {eq. }}+R_{L}\right) R_{L}\right]=0 \\
& \left(R_{\text {eq. }}+R_{L}\right)^{2}-2\left(R_{\text {eqq }}+R_{L}\right) R_{L}=0 \\
& \left(R_{\text {eq. }}+R_{L}\right)-2 R_{L}=0 \\
& \quad \rightarrow R_{\text {eq. }}=R_{L}
\end{aligned}
$$

Thevenin Equivalent Circuit

Conclusions:

For maximum power transfer;
(a) $X_{L}=-X_{\text {eq }}$
(b) Load resistance must be equal to the Thevenin Equivalent Resistance of the simplified circuit; $R_{\text {eq. }}=R_{L}$
or
(c) $Z_{L}=Z_{\text {eq }}$

Phasors

The Principle of Superposition in AC Circuits

Question

Solve the AC circuit shown on the RHS by using The Principle of Superposition

Solution

a) Kill all sources, except one,
b) Solve the resulting circuit,
c) Restore back the killed source and kill all sources, except another one,
d) Repeat the solution procedure (a) - (c) for all sources,
e) Then, sum up algebraically all the solutions found

Phasors

The Principle of Superposition in AC Circuits

Procedure

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAIOĞLU, Page 47

Phasors

Example 1 - The Principle of Superposition in AC Circuits

Question

Solution

Find the current $I_{Z 2}$ flowing in impedance Z_{2} in the following circuit by using the Principle of Superposition

This method is particularly useful when there are sources with different frequencies

Kill all sources except one and solve the resulting circuit

$$
I_{z 2-1}=V_{s} /\left(Z_{1}+Z_{2}\right)
$$

Phasors

Example 1 - The Principle of Superposition in AC Circuits

Solution

Sum up the resulting currents

Kill all sources except one, sequentially and solve the resulting circuits

$$
I_{Z 2}=I_{Z 2-1}+I_{Z 2-2}
$$

$$
\begin{aligned}
& I_{Z 2-2}=\left(I_{s} / Z_{2}\right) /\left[\left(1 / Z_{1}\right)+\left(1 / Z_{2}\right)\right] \\
& =I_{s} g_{2} /\left(g_{1}+g_{2}\right)
\end{aligned}
$$

Phasors

Example 2 - Sources with Mixed Frequencies

Question

Now, find the steady-state current waveform flowing in impedance Z_{2} in the following circuit by using the Principle of Superposition

This method is particularly useful when there are sources with different frequencies

Kill all sources except one, sequentially and solve the resulting circuits

$$
\begin{aligned}
I_{z 2-1} & =V_{s} / 0^{\circ} \quad /\left(Z_{1}+Z_{2}\right) \\
& =V_{s} \angle 0^{\circ} /(1-j 1+2+j 5) \\
& =V_{s} \angle 0^{\circ} \quad /(3+j 4)=V_{s} \angle 0^{\circ} / 5 / 53.13^{\circ} \\
& =310 / 5 /-53.13^{\circ}=62 /-53.13^{\circ} A m p
\end{aligned}
$$

Phasors

Example 2 - Sources with Mixed Frequencies

Solution

Kill all the sources except one, sequentially and solve the resulting circuits

$$
Z_{1}=1-j 1 \Omega
$$

Please note that the capacitor and inductor in the above circuit respond to DC current source as OC and SC, respectively

$I_{2}=100 \mathrm{Amp}(D C)$
Sum up the resulting currents

$$
I_{z 2}=I_{z 2-1}+I_{z 2-2}
$$

$$
I_{z 2}=62 /-53.13^{\circ}+100 \text { Amp (DC) }
$$

Phasors

Example 2 - Sources with Mixed Frequencies

Waveforms

$$
I_{z 2}=62 /-53.13^{\circ}+100 \mathrm{Amp}(\mathrm{DC})
$$

Let us now draw the resulting current and voltage waveforms
$\mathrm{Z}_{1}=1-\mathrm{j} 1 \Omega$

Phasors

Any questions please
 ...

