

Why Three Phase ?

Why Three Phase ?

The Reasons for using Three Phase

Single Phase

Why Three Phase ?

The Reasons for using Three Phase

Three Phase

Why Three Phase ?

The Reasons for using Three Phase

The main reasons for using three phase systems are;

2. Conductor volume in a three phase system is about 25-40 % less than that of a single phase two-wire system with the same kVA rating.

 Current: $I = 1.000.000 VA / (34.500 V \times 0.85)$

 = 34, 10 Amp

 Cross section = 6 mm²

 Cond. volume = 1000 m x 2 x 6 x 10⁻⁶ = 0.012 m³

 Current: $I = 1.000.000 VA / (\sqrt{3} x 34.500 V x 0.85)$

 = 19,69 Amp

 Cross section = 2,5 mm²

 Cond. volume = 1000 x 3 x 2.5 x 10⁻⁶ = 0.0075 m³

Three Phase Voltages

Three Phase Voltages

Three Phase Voltages

Connection of Three Phase Voltages

Connection of Three Phase Voltages

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 10

Three Phase Voltage Waveforms

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 11

Three Phase Voltage and Current Phasors

٨

Ic

120°

θ. θ

l_a(t)

 $V_{b}(t) = V_{max} \cos(wt-120^{\circ})$

b

 $V_a(t) = V_{max} \cos wt$

Va

la

I_b(t)

Vc

lb

 $V_{c}(t) = V_{max} \cos(wt-240^{\circ})$

I_c(t)

∧ Vb

Balanced Three Phase Circuits

Definition

Please note that voltage and current phasors for each phase are 120° displaced from each other

(a)
$$|V_a| = |V_b| = |V_c|$$

(b) $\underline{/V_a} - \underline{/V_b} = \underline{/V_b} - \underline{/V_c} = \underline{/V_c} - \underline{/V_a} = 120^\circ$
(c) $|I_a| = |I_b| = |I_c|$
(d) $\underline{/I_a} - \underline{/I_b} = \underline{/I_b} - \underline{/I_c} = \underline{/I_c} - \underline{/I_a} = 120^\circ$
Or
(o) $V_c + V_c + V_c = 0$

(e) $v_a + v_b + v_c = 0$ (f) $I_a + I_b + I_c = 0$

Balanced Three Phase Circuits

A three phase system satisfying the above condition is said to be <u>"balanced"</u>

In a balanced three phase system,

- sum of phase currents is zero,
- sum of phase voltages is zero

 $V_a + V_b + V_c = 0$ $I_a + I_b + I_c = 0$

Balanced Three Phase Circuits

Balanced Three Phase Circuits

Balanced Three Phase Circuits

Three Phase Measurement-Energy Analzer

Three Phase Energy Analyzer

Energy analyzer shown on the RHS is capable of reading and recording three phase voltages and currents in rms, peak and time - waveform and transmitting the resulting data to computer

Three Phase Measurement-Energy Analzer

EPR-04S

- Cosφ
- Aktif güç
- Reaktif güç
- Görünür güç
- Aktif enerji
- Reaktif enerji
- Dijital giriş
- Enerji pulse çıkışı
- Demand
- 2 Ayrı enerji kaydı
- RS-485 haberleşme
- Toplam aktif, reaktif ve görünür güç

Three Phase Circuit Breaker

Three Phase Load

Three Phase Circuit Breaker

Three phase low voltage circuit breaker is a device that breaks the three phases of power service automatically or manually

This dashed line implies that poles operate in "gang" manner

Three Phase Measurement

Three Phase Power Analyzer

Device shown on the RHS is capable of reading and recording three phase voltages and currents in rms, peak and timewaveform and transmitting the resulting data to computer

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 21

Clamp type Current Transformers

Three Phase Circuit

Phase - a	Phase - b	Phase - c
$V_a(t) = V_{max} \cos wt$	$V_b(t) = V_{max} \cos(wt - 120^\circ)$	$V_c(t) = V_{max} \cos(wt - 240^\circ)$

Three Phase Circuit Connection

Three Phase Circuit Connection

Three Phase Cable

Turkish 380 kV System

Part of Turkish 154 kV System

Ankara 154 kV Ring

Istanbul Anatolian Side MV System

Three Phase Synchronous Generator

Three Phase Generation System

Karakaya Hydroelectric Plant – 1800 MW

Hydroelectric Plant - Sectional View

Configuration

Hydroelectric Plant - Sectional View

Typical Hydoelectric Plant

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 34

Atatürk Hydroelectric Plant; 8 x 300 = 2400 MW

Hydroelectric Plant - Water Turbine

Generation of AC Voltage - Synchronous Generator

Bagnell Dam on Ozarks Lake

Turbine - Generator Set

Atatürk Dam Generator Room

Itaipu Power Plant - 12500 MW Stator Mounting Ceremony

Combined Cycle Power Plant

Thermal (Coal) Power Plant

Parallel Operation of Plants (Double Bus Configuration)

Phase and Line Voltages

n₂ Π. Definition Phase Voltage Voltage between a phase conductor and ground is called phase voltage, Voltage between two phase conductors 8 is called line voltage а b С Line Voltage b С а а b С $I_{a}(t) + I_{b}(t) + I_{c}(t) = 0$ n

Phase and Line Voltages

Definition

- Voltage between a phase conductor and ground is called phase voltage,
- Voltage between two phase conductors is called line voltage

Birds prefer neutral wire since the voltage is zero

Phase and Line Voltages

Phase and Line Voltages

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 46

Relation between Phase and Line Voltages

Relation between Phase and Line Voltages

Example - Turkish HV System

Star (Y) Connection

Star (Y) Connected Generator

Delta (\Delta) Connected Generator

Currents in a Delta (Δ) Connected Generator

Currents in a Delta (Δ) Connected Generator

Relation between Line and Phase Currents

Currents in a Delta (Δ) Connected Generator

Definition

 $I_a = I_{ca} + (-I_{ab})$

$$I_{line} \mid / 2 = \mid I_{phase} \mid x \cos 30^{\circ}$$
$$= \mid /_{phase} \mid x \sqrt{3} / 2$$

|Line Current| = $\sqrt{3} \times$ |Phase Current|

Relation between Line and Phase Currents

Summary

Star-Star (Y-Y) Connected Systems

Star-Delta (Y- Δ) Connected Systems

Definition	Configuration
A star-delta connected system is the one with the source is star and load is delta connected	Please note that neutral wire does not exist in a system with one or both ends delta

Delta-Star (Δ **-Y) Connected Systems**

Three Phase Power in Star Connected Loads

Star (Y) Connected System

Power Per Phase

$$S_{ph} = P_{ph} + j Q_{ph}$$
$$= V_{ph} I_{ph}^{*}$$

Since we have three phases with identical power consumption, total power consumption becomes

 $S_{3-ph} = 3 \times S_{ph}$ = 3 V_{ph} I_{ph}^{*} = 3 (V_{line} / $\sqrt{3}$) I_{line} $S_{3-ph} = \sqrt{3} V_{line} I_{line}$ |Line Voltage | = $\sqrt{3} \times$ |Phase Voltage | Line Current = Phase Current

Three Phase Active Power in Star Connected Loads

Three Phase Reactive Power in Star Connected Loads

Three Phase Reactor

Three Phase Reactor

Small-Size Three Phase Reactor	Line Voltage = $\sqrt{3} \times$ Phase Voltage Line Current = Phase Current
Remember that;	Phase - a Phase - b Phase - c
$Q_{3-ph} = 3 \times S_{ph} \sin \theta$ = 3 V _{ph} I _{ph} sin θ = 3 (V _{line} / $\sqrt{3}$) I _{line} sin θ	
$Q_{3-ph} = \sqrt{3} V_{line} I_{line} \sin \theta$	

Three Phase Transformer

Primary Side (Delta)

Secondary Side (Star)

Primary Side Phase - a Primary Side Phase - b Primary Side Phase - c Voltages **Primary Side** V_{line} = 34500 Volts $V_{phase} = V_{line} = 34500$ Volt **Secondary Side** V_{line} = 380 Volts $V_{phase} = 380 / \sqrt{3} = 220$ Volts

Secondary Side Phase - a

Secondary Side Phase - b

Secondary Side Phase - c

Three Phase Transformer

Three Phase Transformer

Three-Phase Power (Overview)

$$P_{prim.} - a = V_a I_a \cos \theta$$
$$P_{prim.} - b = V_b I_b \cos \theta$$
$$P_{prim.} - c = V_c I_c \cos \theta$$

$$P_{prim. - Total} = V_a I_a \cos\theta + V_b I_b \cos\theta + V_c I_c \cos\theta$$
$$= 3 V_{phase} I_{phase} \cos\theta$$
$$= 3 V_{line} I_{line} / \sqrt{3} \cos\theta$$
$$= \sqrt{3} V_{line} I_{line} \cos\theta$$

Three Phase Transformer

Three-Phase Power (Overview)

Power on the Primary Side

 $P_{Prim. - Total} = \sqrt{3} V_{Prim. - line} I_{Prim. - line} \cos\theta$ $Q_{Prim. - Total} = \sqrt{3} V_{Prim. - line} I_{Prim. - line} \sin\theta$ $S_{Prim. - Total} = \sqrt{3} V_{Prim. - line} I_{Prim. - line}$

Power on the Secondary Side

$$P_{Sec. - Total} = \sqrt{3} V_{Sec. - line} I_{Sec. - line} \cos\theta$$
$$Q_{Sec. - Total} = \sqrt{3} V_{Sec. - line} I_{Sec. - line} \sin\theta$$
$$S_{Sec. - Total} = \sqrt{3} V_{Sec. - line} I_{sec. - line}$$

Example: Star (Y) Connected Load

|Line Voltage | = $\sqrt{3} x$ |Phase Voltage | Line Current = Phase Current

135 MVA shunt reactor delivered to Nevada Power Company by VA TECH ELIN

You do not seem to understand the line voltage in a Y- Connected Load ...

Three Phase Power in Delta Connected Loads

Three Phase Power in Delta Connected Loads

Three Phase Power in Delta Connected Loads

Three Phase Power - Summary

Star (Y) Connected System

Delta (\Delta) Connected System

Three phase power expressions are identical for star and delta connections

Star - Delta Conversion

Formulation

A star connected load can be converted to a delta connected load as follows

$$Z_{ab} = (Z_a Z_b + Z_b Z_c + Z_c Z_a) / Z_c$$
$$Z_{ca} = (Z_a Z_b + Z_b Z_c + Z_c Z_a) / Z_b$$
$$Z_{bc} = (Z_a Z_b + Z_b Z_c + Z_c Z_a) / Z_a$$

Star - Delta Conversion

Delta - Star Conversion

Formulation

A delta connected load can be converted to a star connected load as follows

$$Z_{a} = Z_{ba} Z_{ac} / (Z_{ba} + Z_{ac} + Z_{cb})$$
$$Z_{b} = Z_{cb} Z_{ba} / (Z_{ba} + Z_{ac} + Z_{cb})$$
$$Z_{c} = Z_{ac} Z_{cb} / (Z_{ba} + Z_{ac} + Z_{cb})$$

Delta - Star Conversion

If all impedances of delta are identical, then the formula reduces to the following special simple form

Simplification

$$z_{\gamma} = z_{\Delta}^{2} / (z_{\Delta} + z_{\Delta} + z_{\Delta}) = z_{\Delta} / 3$$

Solution Procedure for Three Phase Problems

Procedure

- First convert all the ∆-connected loads, if any, to Y- connected loads by employing the Delta - Star Conversion Technique given in the previous section,
- 2. Find the source voltages / phase by dividing all the line voltages of the sources by $\sqrt{3}$ for the Y-connected sources
- 3. Decompose the given three phase system into three independent (electrically unconnected) single phase systems

Solution Procedure for Three Phase Problems

Procedure (Continued)

- 4. Then solve one of these single phase systems, i.e. in particular, the one which corresponds to phase-a,
- 5. Calculate active and reactive powers and power losses per phase,
- 6. Finally, multiply;
 - a) all these active and reactive powers by three in order to find the three phase powers,
 - b) all voltages by $\sqrt{3}$ in order to find the resulting line voltages

Example

Example

Solution

 First convert all the ∆-connected loads to Y- connected loads, if any, by employing the Delta - Star Conversion Technique given in the previous section

.

Example

Example

n

Solution

- 2. find the source voltages / phase_
- 3. Divide all the line voltages by $\sqrt{3}$ for Yconnected sources in order to

Example

Example

Solution

4. Then, solve one of the resulting three single phase systems, i.e. in particular, the one which corresponds to phase-a, with zero phase angle, due to its simplicity

$$V_a = 3637.41/0^{\circ}$$
 Volts
 $Z_{\Delta}/3 = 3 + j 4 \Omega$

$$\begin{aligned} V_{\text{line}} &= V_{a \text{-} phase} / Z_{\text{tot}} \\ &= 3637.41 / \underline{0^{\circ}} / [(1 + j2) + (3 + j4)] \\ &= 3637.41 / \underline{0^{\circ}} / (4 + j6) = 3637.41 / \underline{0^{\circ}} / 8.9442 / \underline{56.31^{\circ}} \\ &= 406.67 / \underline{-56.31^{\circ}} Amp \end{aligned}$$

Example

Example

Solution

- 6. Finally, multiply;
 - a) Active and reactive power losses by three in order to find the three phase power losses

$$I_{a} = 406.67 / -56.31^{\circ} \text{ Amp} \quad r + jx = 1 + j2 \Omega$$

$$V_{a} = 3637.41 / 0^{\circ} \text{ Volts}$$

$$Z_{\Delta} / 3 = 3 + j 4 \Omega$$

<u>Three phase power losses;</u> Active power loss = 3 x active power loss /phase = 3 x 165.38 = 496.14 kWs Reactive Power loss = 3 x 330.76 = 992.28 kVARs

Example

Solution

7. Now, calculate the active and reactive powers consumed by the load;

Active and reactive power consumptions;

 r_{load} $l^2 = 3 \times 406.67^2 = 496140$ Watts / phase = 496.14 kWs / phase x_{load} $l^2 = 4 \times 406.67^2 = 661520$ Vars / phase = 661.52 kVARs / phase

Example

Solution

8. Now, calculate the three phase active and reactive powers consumed by the load;

<u>Three phase active and reactive power</u> <u>consumptions;</u>

- $3 \times r_{load}$ $l^2 = 3 \times 496.14 = 1488.42$ kWs
- $3 \times x_{load}$ $l^2 = 3 \times 661.52 = 1984.56$ kVARs

Example

Solution Now, calculate the load voltage / phase 9. $I_a = 406.67 / -56.31^{\circ} \text{ Amp}$ $I_a = 406.67 / -56.31^\circ \text{Amp}$ $r + jx = 1 + j2 \Omega$ V_{load / phase} $V_a = 3637.41 / 0^\circ$ Volts $Z_A/3 = 3 + j 4 \Omega$ Load Voltage/phase (Y-connected load) $= Z_A / 3 \times I_a$ V Load/phase $= (3 + j4) \times 406.67 / -56.31^{\circ}$ = 5/53.13° x 406.67/-56.31° = 2033.35 / -3.18° Volts/phase

Example

Example

Solution

Please note that phase voltage across the delta is the same as line voltage, i.e.

Did eveybody understand three phase systems ?

