
OBJECTS AND CLASSES
Object oriented programming is a programming approach in which
all computations are done in the context of objects. A program
written in an object oriented programming language can be seen
as a collection of objects collaborating to perform a given task.
An object is an entity that encapsulates data describing its current
state and the methods through which it provides services to the
outside world and modify its current state. A set of similar objects
are said to be instances of a single class. You can think of a class
as a blueprint for the objects of the same kind.
A class can be declared in the Java programming language using
the keyword class. States of the instances are declared as
member variables. A member variable can be simply declared by
specifying a type and a name. It is also possible to initialize
member variables while declaring. Methods are declared as
functions with zero or more parameters and a return value. The
return value of a method may be of type void meaning nothing is
returned. It is also possible to declare more than one method with
the same name as long as they require different parameters.
It is possible to restrict access to member variables and methods
of a class by using public, protected, and private keywords. Only
public member variables and public methods are accessible
outside the class declaration. These access restriction mechanisms
will be explained in detail in later chapters.
In the following, a class declaration template is given.

class ClassName{
public variableType1 variableName1;
public variableType2 variableName2=initialValue;
public returnType MethodName1(parameterType1

parameterName1,
..., parameterTypeN

parameterNameN){
...
return ReturnValue;

}
public void MethodName2(parameterType1

parameterName,
..., parameterTypeN

parameterNameN){
...

}
}

Following figure shows a graphical representation of relationships
between objects, variables and methods.

CREATİNG AND USİNG
OBJECTS

Any object must be explicitly created before it is used. To create
an object, a special method of the corresponding class called
constructor must be called. The constructor allocates necessary
resources for an object and return an instance of the created
object. In the Java programming language, you can declare the
constructor by creating a method whose name is the same with
the class. More than one constructors may be defied as long as
they require different parameters.

class ClassName{
public ClassName(zero or more parameters){

...
}

}

In order to create an instance of a class the new operator is used.
The instances can be kept in variables of reference type which are
declared and can be initialized as:

ClassName VariableName = new ClassName(<parameters>);

Where <parameters> are the parameters required by the
constructor if there are any. Member variables and methods of an
instance can be accessed directly using their names within the
class declaration or through its reference variable outside the
class declaration as:

VariableName.MemberVariableName
VariableName.MethodName(<parameters>)

CLASS VARİABLES AND CLASS
METHODS

Member variables may keep different values in different instances
of a class as every instance may have a different state. However,
it is possible to declare a special kind of member variable called
class variable, whose value is the same across all instances of that
class, using the static keyword. For example:

class ClassName{
public VariableType VariableName = InitialValue;
...

}

A class variable can be accessed through instances like any other
member variable, or it can be accessed using the class name as
ClassName.VariableName . Similarly a class method may also be
declared using the static keyword as:

class ClassName{
public static ReturnType MethodName(parameters){

...
}
...

}

Like class variables, class methods can be called through a
reference variable or directly using the class name without
requiring an instance. That is, class methods may be used without
creating an instance. Since they can be called without an
instance, they can not modify member variables except the class
variables.

JAVA PROGRAM
Since the Java Programming Language is a purely object oriented
language, everything within a program must be contained in the
class definitions. In a program, multiple classes may cooperate by
calling methods of each other to perform the requested task.
You can create a standalone application by creating a program
source file which contains at least one class declaration. Every
program needs an entry point for the first statement to be
executed. Therefore, you must specify the entry point for a
program as a method of a class. A special class method main is
used for this purpose. Since class methods do not need any
instances to be called, specifying the class which has a main
method to execute is enough to execute the program. The format
of the main method is as follows:

public static void main(String[] args){
...
}

The main method takes single parameter args and does not return
any value. The args parameter is of type array of String and it
contains the parameters entered from the command line when the
program is run. Since the main method must be a class method

which can be called without an instance outside the class, public
and static keywords are used.

COMMENTS
The Java programming language supports three types of comment:
single line comments with //, multi-line comments with /* and */,
and javadoc comments with /** and */. The first two types are
simple comments, and third one is used for embedded
documentation of a program that is processed by the javadoc tool.
Single line comments can be put anywhere in the program by using
// pattern. The comment starts at the first // and continues to
the end of that line. The following are the examples for a single
line comment.

int i=7; // a single line comment
i=i*7;
// another single line comment
i=1;

Multi line comments can be used when a comment spans multiple
lines in a program. The compiler will discard anything between the
starting tag /* and the first ending tag */. The following are the
examples for a multi-line comment:

int i=7;
/* a
comment */
i=i*7; /*
another
comment
*/
i=i+1;

The javadoc comments may span multiple lines and the compiler
will discard anything between the starting tag /** and the first
ending tag */. The javadoc utility can read javadoc comments and
turn them into HTML documentation.
You can add class and interface-level javadoc comments as well as
method, constructor and field-level comments. Each comment
appears just before the corresponding entity and consists of a
description followed by one or more tags. If desired, you can use
HTML formatting in your javadoc comments. The general format of
a javadoc comment is as follows:

/**
 * A class description
 *
 * @tagname descriptive text
 * ...
 * @tagname descriptive text
 */
public class DocTest {
 /** A variable description */
 public int i;

/**
 * A method description
 *
 * @tagname descriptive text
 * ...
 * @tagname descriptive text
 */
 public void f() {}
}

There are many different kinds of tag defined for javadoc
comments such as @param parameter_name
parameter_description, @author author_name, @version
version_information For complete listing of tags refer to the Java
documentation.

VARİABLES
A variable is as a named container for data (and objects). Memory
space is allocated for a variable at runtime and its name is used to
get or set its value. That is, you can use the name of the variable
to read or write the memory location.
You must declare a variable before using it. That is, you must
declare the variable by giving a name and a type to it. In Java, all
variables must be typed, therefore, compiler knows how to
interpret the data it contains. A variable can be declared as
TypeName VariableName.
A variable can be of a primitive type or reference type. A variable
of a primitive type can contain a single whole number (byte,
short, int, long), a decimal number (double, float), a single or
unicode character (char), or a single on/off state (boolean which
contains either true or false). A variable of a reference type
points to an instance of a class or an array.
A variable’s name must be a valid identifier That is, must be all
one word (no spaces or hypens inside) starting with a letter. It can
actually begin with a unicode currency symbol or an underscore
(_), but it is best to start it with a letter. It may contain letters,
numbers, underscores, unicode currency symbols (such as $), but
no other special characters can be used. Since java is case-
sensitive, its name must be used exactly in the same form after it
is declared.
Following figure shows differnec of reference and primitive type
variables:

VARİABLE INİTİALİZATİON
Method parameters and exception handler parameters are
initialized by the caller of the method. A member or local variable
may be initialized in its declaration using the assignment operator
= as:

typename identifier = initial_value;

Or its value can be set after its declaration as:

typename identifier;
...
identifier = initial_value;
...

A member variable is guaranteed to get a default value (zero for
numeric variables, false for boolean variables, and unicode
character zero for characters and null for reference types) even
you don’t initialize it. However, you must explicitly initialize local
variables before using them.
You can also declare a variable as a final variable whose value
can not be changed after it is initialized. A final variable can be
declared in any context as:

final float PI = 3.14; //initialization at declaration
...
final char firstLetter; // blank final
...
firstLetter = ‘A’ // deferred initialization

final variables are actually correspond to constants in other
languages. Any attempt to change a final variable’s value after it
is initialized will result in a compile time error. For example, the
value of variable PI can not be changed after it is declared and
the value of firstLetter can not be changed after it is initialized.

SCOPE
A variable is accessible within its scope. A variables scope depends
on the context of its declaration. A variable can be declared in
mainly four different contexts: within a class as a member
variable (outside any methods), within method declaration as a

method parameter, within a method as a local parameter, and
within an exception handler as an exception handler parameter
(exception handlers will be explained in later chapters).
A member variable’s scope covers the entire declaration of a class.
A method parameter’s scope covers the entire a method. A local
parameter’s scope extends from its declaration to the end of the
enclosing code block (A code block, which will be defined later in
this chapter, includes everything between the left, {, and right, },
curly braces including the expression that introduces the curly
brace part).

PRİMİTİVE DATA TYPES

A variable of a primitive
type can contain a single
value of predefined size
and format. The format
and size of primitive data
types do not change with
the system on which the
program is running. This
contributes to the
portability of programs
written in the Java
programming language.
There are three kinds of
primitive data type:
numeric (integer or
decimal), boolean, and
character. The table on
the right lists the
primitive data types
supported by the Java
programming language.
Note that all integer data
types are signed and size
of the boolean data type
is not specified (it can
only contain true or
false). You should choose
an appropriate integer
data type for your
variable according to the
range of values it may
contain. Otherwise,
results of your
computations may not be
correct (there may be
overflows). Similarly, if
you don’t choose a
suitable decimal number
type, you may loose
precision or computations
may give an infinite
result.

Primitive Data Types

Category Type
Name Size

Format /
Range of
Values

Integers

byte 1 byte
integer

2’s
complement
-128 to 127

short 2 byte
integer

2’s
complement
-215 to 215-1

int 4 byte
integer

2’s
complement
-231 to 231-1

long 8 byte
integer

2’s
complement
-263 to 263-1

Decimal
Numbers

float

4 byte
floating
point
number

IEEE 754

double
8 byte
real
number

IEEE 754

Characters char
2 byte
Unicode
character

Unicode 0 to
Unicode 216-
1

Booleans boolean -
true or
false

The value of a primitive data type can be converted to an other
primitive data type implicitly by the compiler or you can convert
its type explicitly by typecasting. Widening type of conversions
(e.g., byte to int, int to float, etc.) can be implicitly done by
the compiler. However, narrowing type of conversions (e.g.,
double to int, int to short, etc.) requires explicit casting. Explicit
typecasting has the following form:

(type) value

Here, type corresponds to char or any numeric data type, and
value can be anything (a directly written value - literal, a
variable, or an expression returning a value) that has a value of
primitive data type (except boolean).

LİTERALS

A literal is the
actual
representation of
a number, a
character, a
boolean, or a
string that can
be used directly
in a program (to
initialize a
variable, while
making
computations,
comparisons,
etc.).
The table on the
right summarizes
the format and
examples for
each kind of
literal.
Note that you
can place a –
sign in front of
numerical
literals to have
negative values,
and exponent
part of decimal
numbers can be
made negative
by inserting a –
sign after e (or
E). The character
literals are
enclosed in
single quotes, '
', and string
literals are
enclosed in
double quotes, "
".

Literals

Type Format Examples

int

A sequence of digits 0-9 (0-
9,A,B,C,D,E,F characters for
hexadecimal and 0-7
characters for octal)

123
0123 (octal-
base 8)
0x123
(hexadecimal -
base 16)

long A sequence of digits followed
by a l or L letter.

123L

double

A sequence of digits with one
decimal point symbol . and/or
e (or E) letter. The literal may
be followed by d or D letter.

123D
1.23
1.23D
1.2E-3
12.3E4D

float

>A sequence of digits with one
decimal point symbol . and/or
e (or E) letter. The literal must
be followed by f or F letter.

123F
1.23F
1.2E-3F
1.2E3F

boolean true or false
true
false

char A character in single quotes 'a'

String A sequence of characters in
double quotes

"abc"

Escape Characters

Character Escape
character

Backslash \\

Backspace \b

Carriage Return \r

Single Quote \'

For non printable
characters, escape
characters may be used in
character or string literals.
The table on the left lists
such escape characters.
Examples: '\'' is a
character literal contains a

OPERATORS
Operators perform a function on its operands to produce a value.
Operators behave like predefined functions in the Java
programming language. For, example the expression A+B, which is
built from the operands A and B, and the operator + If A and B both
are of type int, A+B returns their sum. An operator may require
one, two or three operands. An operator requiring one operand is
called a unary operator, requiring two operands is called a binary,
and requiring three operators is called a ternary operator.
Most of the operators operate on expressions returning primitive
data types. Here expression refers to variables, literals, value of a
primitive type returned from a method, or other expressions
formed by operators. Only the operators =, ==, and != work also
with reference types and + and += works also on String objects
(these will be explained in the following sections). There are six
basic kinds of operators: arithmetic, logical, bitwise, assignment,
comparison, and ternary if-else operators. It is also possible to
combine expressions formed by operators to form compound
expressions with more than one operators.
Precedence rules are applied to determine the order of evaluation
in a compound statement built using more than one operators. For
example, * and / are evaluated before + and -. Usually it is not
easy to remember other precedence rules. Therefore, it is
preferred to group simple expressions by enclosing parentheses to
form compound expressions. By this way, you can reduce the
ambiguity in the expression evaluation. For example, in the
following lines, the values of i and j will be different although
they seem to be equal to each other.

i=a+b+c/d+e;
j=a+(b+c)/(d+e);

ARİTHMETİC OPERATORS

Arithmetic operators
can perform
mathematical
functions on numeric
data types (Integers
and Decimal Numbers).
The following table
lists the arithmetic
operators supported by
the Java programming
language.
Note that ++ and --
operators also change
the value of their
operands after the
operation. The result
of the operation is
determined according
to the position of the
operator.

Expression Function

++A
Pre increment: This expression is
equivalent to A=A+1, and the result is
equal to A+1.

--A
Pre decrement: This expression is
equivalent to A=A-1, and the result is
equal to A-1.

A++
Post increment: The result is equal to
A, but after the expression evaluated
value of A is set to A+1.

A--
Post decrement: The result is equal to
A, but after the expression evaluated
value of A is set to A-1.

+A
Promotion: If A is of type byte or
short, the result will be A of type
int.

-A Negation: Result is negative of A.

A+B The result is the sum of A and B.

A-B The result is B subtracted from A.

A*B The result is A multiplied by B.

A/B

The result is A divided by B. If both A
and B are integers, integer division is
performed (i.e., The result is the
integer part of A/B).

A%B The result is remainder from the
integer division A/B.

COMPARİSON OPERATORS

Comparison operators
compare the values of
two operands and
produce a boolean
result. The following
table lists the
comparison operators
supported by the Java
programming
language.

Expression Function

A==B

Equal to: If the value of A is equal to
the value of B then the result will be
true otherwise, the result will be
false.

A!=B

Not equal to: If the value of A is not
equal to the value of B then the result
will be true, otherwise the result will
be false.

A<B

Less than: If the value of A is less than
the value of B then the result will be
true, otherwise the result will be
false.

A<=B

Less than or equal to: If the value of A
is less than or equal to the value of B
then the result will be true,
otherwise the result will be false.

A>B

Greater than: If the value of A is
greater than the value of B then the
result will be true, otherwise the
result will be false.

A>=B

Greater than or equal to: If the value
of A is greater than or equal to the
value of B then the result will be true
otherwise the result will be false.

LOGİCAL OPERATORS
Logical operators
operate on boolean
values to perform
boolean operations like
NOT, AND, OR, or XOR
(exclusive or). The
following table lists
the logical operators
supported by the Java
programming
language.
Note that conditional
AND and conditional
OR operations may not
evaluate the second
operand depending on
the value of the first
operand.

Expression Function

!A
NOT: if A is true then the result will
be false; if A is false then the
result will be true.

A&B
AND: If both A and B are true then
the result will be true, otherwise the
result will be false.

A&&B

Conditional AND: If A is true, then the
result will be the value of B, otherwise
the result will be false (B will not be
evaluated!).

A|B
OR: If both A and B are false then
the result will be false, otherwise
the result will be true.

A||B

Conditional OR: If A is false then the
result will be the value of B, otherwise
the result will be true (B will not be
evaluated!).

A^B

XOR: The result will be true if only
one of A or B is true. If both A and B
are true or both A and B are false
then the result will be false.

TERNARY OPERATOR
There is only one ternary operator, ?: in the Java programming
language. The expression A?B:C returns the value of B or C
depending on the value of A. The first operand, A, must be an
expression that returns a boolean value, and if A is true then B is
evaluated and its value will be the result of the operation. If A is
false then C is evaluated its value will be the result of the
operation. Note that, depending on the value of A, one of the
operands (B or C) may not be evaluated!

BİTWİSE OPERATORS
Bitwise operators
perform bit by bit
operations, such as
NOT (~), AND (&), OR
(|), XOR (^), or shift
(left or right), on
operands. Operands
in these operators
must be integers (&
and | also operate on
booleans as we have
seen before), and
operations are carried
out on binary
representations of
the values of
operands.

If bit-n of a value is the bit at the nth

position of the value’s binary
representation, the bit-n of the result for
~A, A&B, A|B, A^B are evaluated according
to:
bit-n of

A

bit-n of

B

bit-n of

~A

bit-n of

A&B

bit-n of

A|B

bit-n of
A^B

0 0 1 0 0 0

1 0 0 0 1 1

0 1 1 0 1 1

1 1 0 1 1 0

Shift operators shift
the bits of the first
operand to left or
right by distance
specified in the
second operand, and
fills the empty bits
with 0 (except right
shift operator >>).
The following shift
operators are
suppored by the Java
programming
language.

Expression Function

A<<B

Left Shift: Shifts the bits of A to the
left by B positions, with 0's shifted in
from the right (high order bits are
lost)

A>>B

Signed Right Shift: Shifts the bits of A
to the right B positions. If A is
negative, 1's are shifted in from the
left; if it is positive, 0's are shifted in
(sign of A is preserved)

A>>>B
Unsigned Right Shift: Shifts the bits
of A to the right by B positions, with
0's shifted in from the right.

ASSİGNMENT OPERATORS

The basic assignment operator, =,
assigns left operand the value of the
right operand. For example, expression
A=B sets the value of A to the value of
the expression B. In this expression, the
right operand, B, can be any expression
producing a value. However, the left
operand must be a variable.
The arithmetic, logical and bitwise
operators may also be used with =
operator to perform an operation with
operands and assign the value to the
left operand. For example, the
operator += can be used as A+=B to add
two operands A and B and assign result
to A. In this case, like = operator, the
right operand can be any expression
producing a value, and the left operand
must be a variable. The following table
lists such shortcut assignment operators
and their equivalents.

Expression
Equivalent
Expression

A+=B A=A+B

A-=B A=A-B

A*=B A=A*B

A/=B A=A/B

A%=B A=A%B

A&=B A=A&B

A|=B A=A|B

A^=B A=A^B

A<<=B A=A<<B

A>>=B A=A>>B

A>>>=B A=A>>>B

REFERENCE DATA TYPES
A variable of a reference data type may refer to an object or array
(As it will be explained in upcoming lectures it may also refer to
interfaces and classes). Since variables of reference data types is
only a reference to the actual item to which they refer, their use
is very different from variables of primitive data types.
Declaration of a variable of reference type is very similar to
declaration of a variable of primitive type.

TypeName variableName

Here, TypeName is the name of the type for the entity that will be
referred to, variableName must be a valid identifier. Like primitive
data types, method parameters are initialized by the caller.
Member variables are initialized to null value, which means an
empty reference, and they may be initialized later. But you must
explicitly initialize local variables before using them.
By declaring the variable, you simply create a placeholder (a
reference storage area) for the variable only, not for the entity
that will be referred to. Therefore, a simple initialization could be
copying the reference of an entity from another variable by using
= operator or creating a new entity with new operator and passing
its reference to the variable using = operator. The following
example illustrates the declaration and initialization of such
variables.

MyClass x = new MyClass();
MyClass y = x;

In this example, variable x of type MyClass is declared and
initialized by creating an instance of MyClass. The new operator is
used to create an instance of an entity. Then, another variable, y,
is declared and initialized by x. Therefore both variables refer to
the same object. If the entity is of type class then while using the
new operator you actually call the constructor for that class. The
constructor allocates necessary resources for the object and
returns an instance of the object.
The assignment operator =, and comparison operators == and !=
may also be used with reference variables. But, you shouldn’t
forget that reference variables only contains a reference to actual
entities. So, = operator only copies the reference of an entity to
another variable, and == and != operators only compares
references (not their contents!) and return true if they are equal
to each other.

GARBAGE COLLECTOR
After you created an entity using new operator, resources are
allocated and a reference for that object is returned. In many
other programming languages, you have to cleanup the resources
(or destroy) for any explicitly created entity when they are no
longer needed. However, in the Java, you don’t need to destroy
entities that are created by new operator. Garbage collection
mechanism destroys them for you, when it is detected that they
will be no longer used.
When there is no variables referencing an object, the object is put
into a garbage collector. That means, when all the variables
referencing the entity go out of scope, assigned to different
entities, or assigned to null value, then the entity is automatically
destroyed.

WRAPPER CLASSES
Wrapper classes for primitive data types, arrays and strings are
some simple reference data types that are frequently used in
programs.

In some cases, you need an object
containing a value of primitive data
type (one use of wrapper classes will
be explained later when Collections
are explained). The following table
lists the wrapper classes
corresponding to each primitive data
type.
Variables of these classes can be
declared and initialized like ordinary
reference variables. The objects of
type any wrapper class can be created
by using the new operator and passing
one value of the corresponding type in
the constructor.

Primitive Data
Type Wrapper Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

In order to use the value contained in an object of type wrapper
class, you may call the object's xxxValue() methods, where xxx is
the name of the corresponding primitive data type name (e.g.,
byteValue(), intValue(), booleanValue(), etc).
For example, the following code creates two objects of type
Integer and assign them to two variables i, and k and s:

Integer i = new Integer(5);
int j = 5;
Integer k = new Integer(j);
boolean b = i==k;
Integer s = k;
boolean e = s==k;
j = i.intValue() + k.intValue();

Note that, in the above example, although they contain the same
value, 5, the variables i and k are not equal to each other (i.e., b
is false). However, since they refer to the same object, variables
s and k are equal to each other (i.e., e is true).

ARRAYS
An array can contain a group of values of the same data type. In
order to declare an array, you may put square brackets, [], either
after the variable name or after the data type. For example,

int[] j
int k[]

Declare variable j, and k as one dimensional array of elements of
primitive type int. Like other reference types, declaring an array
does not allocate memory for that array. Arrays must be created
before they are used (so the variable is initialized). Arrays also
created by new operator as new elementType[size]. For example,

int[] j = new int[10];
int k[];
k = new int[5];

creates arrays of size 10 and 5 and assigns references to them to
variables i and j, respectively. Array members may also be
accessed by brackets as variableName[index]. The index starts at
0 and last element is the size-1. The following example, creates
an array of char of size 3 and initializes its members:

char[] c = new char[3];
c[0] = 'a';
c[1] = 'b';
c[2] = c[1];

There is also a shortcut way of creating and initializing members
of an array using curly braces, {}. The following example
illustrates shortcut initialization for an array.

char[] c = {'a', 'b', 'b'};

Size of an array can be learned by the length variable. For
example, c.length will return 3 for the array in above example.
It is possible to create multi-dimensional arrays and arrays
containing elements of reference types. Arrays will be explained in
detail later.

STRİNGS
In the Java programming language, String objects are used to
carry sequence of characters. Unlike other programming
languages, the string contained in the String object cannot be
changed after assignment. That is, Strings are constant once they
are created. Instead, you can assign a new reference to a variable
of type String. The following example demonstrates different
ways of creating string objects and assigning values to variables of
type String.

String s = new String("abc"); // Create using constructor
String t = "abc"; // shortcut initialization
s = "abccd"; // shortcut assignment

Operators + and += operate also on Strings to create new String
objects from the values of the operands. Operator + may also be
used with any operand of any type. For example, the value of s
after the following code executed will be "abc105".

String s;
s = "abc";
s += 1;
s += '0';
int j=5;
s = s+j;

In order to compare the values contained in two String variables,
you should use String's compareTo() method (since comparing
variables directly only check the references, not the values

contained in). For example, if you want to compare the values in A
and B of type String, you may call A.compareTo(B) which returns 0
if they contain the same string, returns -1 if A<B, and returns 1 if
A>B.
Primitive data types and Strings can be converted to each other
using the appropriate methods of the String class and wrapper
classes for the primitive types. Primitive types can be converted
to the String using the primitive type's corresponding wrapper
class's toString(value) method (since toString is a class method,
you can use it without any instance using the class name directly),
and Strings can be converted to the a primitive type using the
String's valueOf(string) method. For example:

int i = 5;
String s = Integer.toString(i);
i = String.valueOf(s);

STATEMENTS
A statement is a single command in a program. An individual
statement ends with a semicolon (;). A single statement may cover
multiple lines of code, but everything up to semicolon is processed
as a single command. A statement may

Declare a variable,
Create a reference data type,
Assign a value to a variable,
Increment or decrement a variable (using ++ or --
operators)
Call a method,
Complete the execution of a method (return
return_value;).

Multiple statements may be enclosed by curly braces ({ and }) to
form compound statements. Such statements can be used where
only one statement is allowed (in execution control statements
that will be explained). The following example illustrates a simple
statement block

...
{
 int i = 0;
 i += i+1;
 String s = i.toString();
 s = "2*2=" + s;
}
...

While the program executes, statements are executed in the order
they are written. However, It is possible to control the execution
of statements according to some condition using control flow
statements. There are three main groups of control flow

statements: Loop statements, conditional statements, and
branching statements. Since loop and conditional statements are
themselves also statements, they can be nested in any depth (they
can contain other control flow statements in their body).

LOOP STATEMENTS
Loop statements enable execution of the same statement (or
statements) zero or more times according to a given condition
expression. There are three kinds of loop statements in the Java
programming language: while, do-while, and for.
A while statement executes a single statement or a statement
block (if you want to execute more than one statements) as long
as the condition given to it is true. The condition expression must
return a boolean value. The format of while statement is as
follows:

...
while (condition) statement;
// or
while (condition){
 statement 1;
 ...
 statement n;
}

A do-while statement does a similar execution. It executes one
statement or statement block as long as the condition given to it is
true. However, it differs from while statement in that the
statement(s) following do is executed at least once, whereas the
statement(s) following while may not be executed depending on
the value of the condition expression. The format of the do-while
statement is as follows:

...
do statement while(condition);
// or
do {
 statement 1;
 ...
 statement n;
} while (condition);
...

A for statement is used to iterate over a range of values. The
format of the for statement is as follows:

...
for(initialization;condition;iteration) statement;
// or
for(initialization;condition;iteration){
 statement 1;
 ...
 statement n;
};
...

Here initialization is a statement that is executed at the beginning
once. It may contain a variable declaration and initialization, or it
may only initialize a control variable. iteration statement is
executed each time the following statement(s) is executed until
the condition expression evaluates a false.

CONDİTİONAL STATEMENTS
Conditional statements enable deciding which statement (or
statements) to execute according to the given condition
expression. There are three kinds of loop statements in the Java
programming language: if, if-else, and switch.
An if statement is used to decide whether to execute or not a
statement or a statement block. If the condition is true, the
statement(s) is executed, otherwise, the execution continues from
the next statement following if. The format of the if statement
is as follows:

...
if(condition) statement;
// or
if(condition){
 statement 1;
 ...
 statement n;
}
...

The condition expression must return a boolean value. A do-while
statement does a similar execution. It
An if-else statement is used to decide which statement or
statement block to execute. If the condition is true, the first
statement or statement block is executed, otherwise the second
statement or statement block is executed. The format of the if-
else statement is as follows:

if(condition) statement1; else statement2;
// or
if(condition){
 statement 1_1;
 ...
 statement 1_n;
} else {
 statement 2_1;
 ...
 statement 2_m;
}

The else part may also contain other if statements:

if(condition 1){
 statement 1_1;
 ...
 statement 1_n;
} else if (condition 2){

 statement 2_1;
 ...
 statement 2_m;
} else if (condition 3) {
 statement 3_1;
 ...
 statement 3_k;
} else {
 statement 4_1;
 ...
 statement 4_t;
}

A switch statement can be used to choose a statement or
statements to execute according to an integer or character value
(coming from a variable or expression). The format of the switch
statement is as follows:

switch(expression){
case <value1>:
 statement 1;
 break;
case <value2>:
 statement 2;
 break;
...
case <value n>:
 statement n;
 break;
default:
 statement n+1;
}

Where, expression produces an integer or character value, and the
statement to execute is determined according to its value. For
example, if its value equal to <value 2> the section case <value
2> is executed until the break statement. The break statement
causes termination of switch block and execution continues with
the next statement following switch block. When none of the case
<value i> lines match, the default part is executed (if not
required default section may be omitted).
It is possible to combine multiple case sections as:

switch(expression){
case <value1>:
case <value2>:
case <value3>:
 statement 1;
 break;
case <value4>:
case <value5>
 statement 2;
 break;
...
case <value n>:
 statement n;
 break;

default:
 statement n+1;
}

In this case, if expression is equal to one of <value1>, <value2> or
<value3>, the statement 1 is executed.

BRANCHİNG STATEMENTS
break, and continue statements can control the execution of
statements in while, do-while, and for blocks. There are two
forms of these statements: plain and labeled. Plain form is used to
control execution of the current innermost statement block, and
labeled form is used to control execution in nested statement
blocks. A label can be given to a statement block as:

label:
control_flow_statement;

break statement terminates the innermost block if used in the
plain form, and terminates the specified block if used in labeled
form. For example;

...
for_loop:
for(int i=0; true; i++) {
 ...
 int j=0;
 while(true){
 j++;
 ...
 if(i==100) break for_loop;
 ...
 if(j>=200) break;
 ...
 }
}

In this example, the break for_loop; statement causes outer for
loop to terminate and the plain break; statement causes inner
while loop to terminate (for loop continues execution).
The continue statement is used to skip current iteration of while,
do-while, or for loops. If it is used in the plain form, it skips the
current iteration of the current innermost block. If it is used in the
labeled form, it skips current iteration of the specified block. The
execution continues with the execution of the statement control
part and according to the value of condition expression, further
iterations may continue, or not.

