
OBJECT ORİENTATİON
Software development can be seen as a modeling activity. The
first step in the software development is the modeling of the
problem we are trying to solve and building the conceptual model
of the problem domain. The next step is to convert this model to
the solution domain model which represents the program that will
actually solve our problem. In this perspective, programming
languages define the solution domain model that can be converted
to the running program by means of compilers. In summary, the
software development process takes place in two different
domains and at least two kinds of modeling techniques are
required.
Object Orientation narrows the gap between problem and solution
models as it enables us to represent solution domain in terms of
problem domain elements. The problem domain elements include
real world objects that interact to accomplish a given task. For
example, a library system deals with librarians, borrowers, books,
and their interactions. While we model the problem, we model
each problem domain element with their states and behaviors and
identify their interactions. For example, any system to automate
the operations in a library should deal with the objects in the
problem domain.
We can identify two merits of the object oriented approach in
software development process: they can be used for any problem
we face with and solution domain model actually resembles the
problem domain model. Since the real world can be seen as a
bunch of objects collaborating to achieve a task, shaping the
solution domain in terms of objects and their interactions
potentially gives us an opportunity to solve any problem using
object oriented approach. Moreover, as solution domain model
reflects the problem domain model, while you read your program,
you are actually navigating through the problem domain. This,
obviously, will contribute to reduction of complexity, ease of
development and ease of maintenance of the programs.

ENCAPSULATİON
Objects are the constructing elements of an object oriented
program. Like real world objects, each object in a program has an
identity, state, and behavior. That is, an object encapsulates state
and behavior.
Every object has an identity that distinguishes it from the other
objects. That is, every object has a reference that points to
memory location where the object resides in the memory. The
reference of an object may be considered as the name of an
object in a program. Therefore, in order to get services from an
object you must know the reference for that object.
Objects provide services to the other objects through their
member methods which define the behavior of the object. Objects

also has a state which is the data kept in member variables. The
state of an object can be changed through calling member
methods of that object and behavior of the object may change
according to the state of the object.
The following
diagram shows some
of the objects that
may be important for
a library system (also
important for the
users of the library
system). The notation
used here is the
Unified Modeling
Language (UML) –
which is a widely
used modeling
language used in
object oriented
analysis design.
Objects are shown as
rectangles with
identities of the
objects written in the
top (which is
underlined and a
semicolon appended),
state is written in the
middle and the
services provided are
written in the bottom
portion. As it can be
seen, each object
may have different
states, and
associated behavior.

CLASSES
A class is a data abstraction that represents and defines a set of
similar objects with the same kind of states and behavior. That is,
a set of objects with the same characteristics belong to the same
class. A class can be seen as a blueprint of an object that defines
its internals, an object is an instance of a class.

A class actualy contains code declaring the
member variables and member methods. The
class Book, for example, would declare member
variables author, borrower, and due, and
member methods borrowedBy and Returned.
After creating the class, you can create and use
objects which are instances of that class. The
following UML diagram shows the class Book.
After the class Book is declared, any number of
objects may be created as instances of the Book
class.
In practice, objects brings cohesion and modularity while classes
bring reusability to the programs. Each object has a certain well-
defined behavior and data and you can modify one object without
affecting other objects. By declaring the classes, the same code
can be reused to create instances of that class.

MEMBER VARİABLES AND
THEİR INİTİALİZATİON
Each object’s state is kept in member variables. Member variables
can be declared in a class body (not in method implementations –
variables declared within methods act as local variables) as
ordinary variable declarations like:

DataType variableName;

Every member variable, if it is not explicitly initialized, are
initialized to their default values (0 for integer, floating point, and
character primitive data types, false for boolean data types, and
null for reference data types such as String, array or any other
object reference) when an object is created. However, it is
possible to initialize member variables explicitly in their
declarations as:

DataType variableName = initialValue;

If you like, you may initialize the member variables within
constructors. It is also possible to create explicit initialization
blocks as:

class Circle{
int originX;
int originY;
float radius;
{

originX = 0;
originY = 0;
radius = 1;

}
...
}

Note that, for any of the above initialization methods, in order to
initialize a variable you may provide a literal directly in code or
write an expression producing a value (including function calls and

object creation expressions).
Member variable declarations and initializations may be placed
anywhere within a class between method declarations, and the
order of initialization is determined by the order they are
initialized. But the variables are guaranteed to be initialized at
least to their default values before any method even the
constructor is called. Therefore, initialization within constructors
takes place after default initializations, initializations at
declaration, and explicit initialization within initialization block
are done.

METHODS AND OVERLOADİNG
In the Java Programming Language, a member method by simply
declared by specifying a name, a set of arguments, and a return
value type. Here, argument names and method name must be
valid identifiers (valid identifiers are explained in the previous
chapter). There may be zero or more arguments of primitive or
reference type and the return value type may be a primitive type,
reference type or void which means nothing is returned. When the
method execution completes you may exit from the method using
the keyword return followed by the return value if the return
value type is not void anywhere within the method
implementation.
In some cases, you may want to provide different implementations
for the same method. Overloading enables you to give the same
name for such methods. To overload the method, you may declare
two or more methods with the same name but with different
parameter data types. Here, either number of parameters or data
types of parameters (order of parameter declaration is important)
must be different in different methods with the same name.
Therefore, the compiler knows which method to call in run-time.

CLASS METHODS AND CLASS
VARİABLES
Member variables may keep different values in different instances
of a class as every instance may have a different state. However,
it is possible to declare a special kind of member variable called
class variable, whose value is the same across all instances of that
class, using the static keyword as:

static VariableType variableName;

A class variable can be accessed through instances like any other
member variable, or it can be accessed using the class name as
ClassName.variableName. This actually means that you can access
class variables even if no instances has been created yet.
Like member variables, class variables take their default values
even if you don’t initialize them explicitly. However, it is also
possible to assign initial values while declaring or within explicit
initialization blocks as:

class MyClass{
static int i;
// i is initialized to 0 by default
static int j = 10;
static int k;
static int r:
static{
// this is explicit initialization block

k=20;
r=20;

}
}

Similar to class variables, you may declare member methods as
class methods using the static keyword as:

class ClassName{
public static ReturnType

MethodName(parameters){
...

}
...

}

Like class variables, class methods can be called through a
reference variable or directly using the class name without
requiring an instance. That is, class methods may be used without
creating an instance. Since they can be called without an
instance, they can not modify member variables except the class
variables.

CREATİON, INİTİALİZATİON,
AND CLEANUP
As a class is a blueprint, the instances of that class are created
from it. For this purpose the new keyword of the Java Programming
Language is used as explained in previous chapter. The creation of
an object also takes the responsibility of initialization of the
object. For this purpose, a special member method of the object,
namely constructor, is used. They are special methods in that they
have the same name with the class and they have no return
values.
Since, the created objects needs to be used later by other
objects, we should keep its identity in variables of reference type.
Since variables may contain any values, an object may be referred
by many variables.
Suppose that we have the following Rectangle class declaration:

class Rectangle{
int positionX;
int positionY;
int width;
int height;

Rectangle(int X, int Y, int aWidth, int aHeight){
positionX = X;
positionY = Y;

width = aWidth;
height = aHeight;

}
}

A reference variable of type Rectangle can be declared and
initialized simply as:

Rectangle aRectangle = new Rectangle(5, 5, 15, 10);

It is also possible to declare more than one constructors for a class
as long as overloading rules are ensured. Moreover, you may call
other constructors within constructors using the keyword this as
this(parameters if there is any). In practice, compiler passes a
hidden variable, this, to each method that points to the current
instance of the class. The this keyword can be used in some
special cases when you explicity need to use the reference of the
current object (for example, while calling constructors within
constructors, and returning a reference to the current object from
methods).
If you do not declare a constructor for a class, the compiler will
automatically create a constructor with no arguments for the
class. The constructor with no arguments is also known as default
constructor. For example, if you declare a basic class as:

class IntegerHolder{
 int i;
}

You can create an instance of IntegerHolder by calling default
constructer as:

IntegerHolder anIntHolder = new IntegerHolder();

Note that, if you do not declare any default constructor and you
declare a constructor with arguments, the compiler will not create
a default constructor, so you cannot create the instance simply by
calling the default constructor.
An object is accessible within its scope using its reference variable
and whenever, the object will not be used anymore, it is garbage
collected. Any object is garbage collected when no variables
referring to an object remains in the program. Since gargabe
collection is automatic, there is nothing to do to clean-up the
object. However, in some cases, you may want a special cleanup
method to release some resources allocated for the object. In this
case you may declare a special method, finalize(), and put
clean-up code inside this method. However, while using
finalize(), you must be careful because, the finalize() is called
only when an object is garbage collected and your objects may not
be garbage collected immediately. So, if you really want a special
clean-up method, you may declare a member method for this
purpose, and you may call this method by yourself when you finish

with the object.

REUSE
When you declare a class, you may reuse its declaration primarily
in two dimensions: the class declaration may be used to create
instances of that class, or class declaration may be used to create
a new class. The first one is the straight forward way of reuse of
class declaration and the latter one is called inheritance which
will be discussed later.

When you declare an
instance of a class
within another
object, this reuse is
called composition or
association depending
on the relation
between the creating
object and created
object. The ordinary
association between
two classes describes
a relationship that
will exist between
instances at run-time.
That is, one object is
used by another
object in the program
by means of
reference variables.
On the other hand,
compositions are
special associations
that represent whole-
part relationships. If
there is a composition
relationship between
two classes, the
instances of the parts
is really a part of
instances of the
aggregate. The
following diagram
shows a simple
association and a
simple composition
relationship between
two classes in UML. In
general each
association is labeled
to indicate the nature
of association and
symbols indicating
multiplicity (how
many instances of the
class at this end of
the association) at
each end of
association. Note
that, * means zero or
more.

INHERİTANCE
The second kind of reuse is the reuse of class structure through
inheritance. Inheritance is one of the key elements of object
oriented programming languages.
If different classes have similar states and provides similar service,
inheritance allows us to reuse those similar parts from a
generalized class declaration. This is accomplished through
creating an abstract base class and reusing its state and behavior
in more specialized classes. If a class is derived from a base class,
all member variables and member methods of the base class are
inherited by (or made available to) the derived class. The base
class is also called superclass and the derived class is also called
subclass of that superclass. By inheritance, you are actually
creating a new class which is also compatible with the superclass.
That is, subclass can also be used as if it is of type superclass. This
makes possible casting the instances of subclass to superclass,
which is another key feature of object oriented programming
languages, polymorphism. Polymorphism will be discussed later in
this chapter.
Inheritance relationship is also referred as isa relationship. For
example, if you create a Shape class, and create Rectangle and
Circle classes by inheriting from the Shape class, we can say that
every Rectangle is a Shape, and every Circle is a Shape. This
feature also helps to make generalizations using inheritance. If
there is an inheritance relationship between two classes, isa rule
should hold. Otherwise, you should not use inheritance. For
example, it is not good to make an inheritance relationship
between Circle and Rectangle, since we cannot say 'every
Rectangle is a Circle'.

The simple inheritance allows
you to reuse the superclass’s
member methods and variables,
and define new member
variables and methods in the
subclasses. The following
diagram shows a simple
inheritance hierarchy for
geometric shapes in UML. To
indicate the inheritance
relationship between classes, we
use a triangle points to
superclass.
Note that, inheritence can be of
any depth. That is, a class may
inherit from a subclass of an
superclass, and the new class
inherit all methods and variables
in its superclass while some of
these may have been inherited
from superclass’s superclass.
In the Java programming language in order to inherit from a class,
while creating your class you can use extends keyword in class
declaration as:

class Shape{
int positionX;
int positionY;
void move(int newX, int newY){

positionX = newX;
positionY = newY;

}
}
class Circle extends Shape{

int radius;
void scale(int scaleFactor){

radius *= scaleFactor;
}

}
class Rectangle extends Shape{

int radius;
void scale(int scaleFactor){

width *= scaleFactor;
height *= scaleFactor;

}
}

The creation and use of the subclasses is the same with ordinary
classes. Inheritance also allow you to call superclass member
methods and variables as well as subclass member methods and
variables from the subclass instances as:

Circle c = new Circle();
c.positionX = 10;

c.positionY = 20;
c.radius = 3;
c.move(11,11);
c.scale(5);

Even if you don’t inherit a class from another class, the compiler
automatically inherit the class from Object class. Every class you
declare is inherited directly or indirectly from the Object class.
The Object class is the top class in the inheritence hierarchy and it
is possible to cast any object within the program to Object class
(this is useful when you store, retrive, and manipulate instances of
different classes). Object class provides many useful services that
are inherited by all classes in the program. Some of these are,
toString(), equals(), clone(), getClass(). For complete listing
of these services you may refer to Java Documentation.

METHOD OVERRİDİNG
While inheriting from a superclass, you inherit member methods
and variables from superclass. However, it is possible to change
the behavior of the subclass by overriding the superclass methods.
For this purpose, you may exactly redeclare the member method
of the superclass in the subclass, and provide an alternative
implementation. In this case, all calls to this method will execute
the newly provided alternative implementation.
The following example illustrates overriding a method:

class Shape{
int positionX;
int positionY;
...
 String toString(){

return "A Shape at (" + positionX + "," +
positionY + ")";

}
...
}
class Circle extends Shape{

int radius;
...

String toString(){
return "A Circle of radius " + radius +

" at (" + positionX + "," + positionY
+ ")";

}
...
}

It is also possible to call superclass version of the overridden
method by using the keyword super. As you call a method of a
subclass, compiler passes a hidden parameter super which points
to the superclass’s implementation. Therefore in order to call a
method implemented in superclass you may simply use
super.methodName(parameters) expression. The following example
illustrates the use of super keyword within a subclass.

class Shape{
int positionX;
int positionY;
...
 String toString(){

return "A Shape at (" + positionX + "," +
positionY + ")";

}
...
}
class Circle extends Shape{

int radius;
...

String toString(){
String s = super.toString();
s += " which is circle of radius " + radius.

return s;
}

...
}

INİTİALİZİNG BASE CLASSES
A subclass may initialize itself by means of constructor. While
initializing itself, the super class must also be initialized, i.e., its
constructor must also be called. If the superclass has a default
constructor (a constructor with no parameters – it may be
declared explicity or compiler automatically generates a default
constructor if there is no constructor defined for a class), the
compiler calls the base class’s constructor automatically. However,
if there is no default constructor of the superclass, the subclass
must call its superclass’s constructor inside its constructor
explicitly by providing necessary parameters and using the
keyword super. You may also explicitly call the superclass’s non-
default constructor although it has a default constructor.
The superclass’s constructor must be called in the first statement
in the subclass’s constructor. That is, superclasses are initialized
before subclass is initialized.

CONTROLLİNG ACCESS
Hiding implementation details is one of the most important
features of object oriented languages. Users of a class do not need
to know all the details of a class. By choosing different access
levels to each member method and variable, a class may specify
necessary interface required by the users of the class. This
contributes to simplicity and more importantly robustness of the
system. Since, a class can be used only in a specified way, it is
possible to ensure proper state and use of the class.
In the Java Programming Language, a class can protect its member
variables and methods from access by other objects by the use of
four kinds of access specifiers. These access specifiers enable you

to provide different interface to different users of the system. The
access specifiers available in the Java Programming Language and
their meanings are as follows:

private: The private methods and private variables can only
be accessed by the class declaring them.
protected: The protected methods and protected variables
can be accessed by the class declaring them, the subclasses
of that class, and the package the class is declared
(packages will be explained later).
public: The public methods and public variables can be
accessed anywhere within a program.

In addition to these, there is one more access level, package, in
the Java Programming Language. In this access level, member
methods and member variables can only be accessed anywhere
within the package in which the class is declared (it obviously
includes the class itself). If you do not use any access specifier
explicitly, the package access level is chosen automatically.
These access specifiers can directly used at member function and
member variable declarations as:

class MyClass{
public int i;
protected int j;
private int k;
int p; // package access
public int getPublic(){…}
protected int getProtected(){…}
private int getPrivate(){…}
int getPackage(){…} // package access

}

POLYMORPHİSM
Polymorphism is one of the most powerful features of object
oriented languages. By polymorphism, every object in the program
may be seen in different forms according to its inheritance
hierarchy while its behavior does not change.
As mentioned before, an instance of a subclass may be casted to
one of its superclasses automatically by the compiler. Casting an
object to one of the superclasses is called upcasting. By upcasting
objects of different subclasses to a common superclass, the same
code may be used to manipulate them. More importantly, if you
create new subclasses, you may continue to use the same code
manipulating the objects without changing anything. This brings
extensibility to your program, and simplifies the code by using the
same code for objects of similar classes. That is you do not need
to write statements for each distinct class to manipulate them.

Inheritance, method overriding,
together with dynamic binding
enables polymorphic objects to
behave correctly even if they are
upcasted. Dynamic binding is a
method calling mechanism which
determines the correct method
to call when a member method
of an object is called. Consider,
for example, our previous shape
classes are modified a little bit
to have the following inheritance
diagram in UML.
In this inheritance diagram, the scale method of Shape class is
overridden in Circle and Rectangle classes. Any call made to scale
method of an instance of Circle class has two alternative
implementations: scale method of Shape and scale method of
Circle. Since the scale method of an instance of Circle is called,
the compiler will call the scale method of the Circle (not the
scale method of the Shape). Upcasting the instance of Circle
object does not effect this behavior. This property leads to many
benefits. For example, suppose we have an array of instances of
classes Circle and Rectangle as follows:

Shape[] shapes = new Shape[3];
shapes[0] = new Circle();
shapes[1] = new Rectangle();
shapes[2] = new Circle();

In order to scale all instances, the following code will be
sufficient:

for(int i=0; i<shapes.length; i++) shapes[i].scale(4);

In above example, we make use of polymorphism to store
instances of different classes in a common storage, and we call
scale method of instances without worry of from which class they
are created. After some time, you may create another subclass of
the Shape class, Triangle, and you may use the above code
without changing anything to store and scale the instances of
Circle, Rectangle, and newly created Triangle.

DOWNCASTİNG AND RTTI
By upcasting, you actually loose the type information of an object.
In some cases, you may want to cast an object to its actual type,
which is called downcasting. Since you cast an object to a more
specific class, downcasting must be made explicity as:

Shape s = new Circle();
Circle c = (Circle) s;

While downcasting you should guarantee that casting is correct, so
that you will not cast an object to an irrelevant class. For
example, you cannot cast s in above example to a Triangle class.
Actually, in Java, every downcast is type checked in run-time to
ensure correct casting is done. If you try to cast an object to an
incorrect class you will get a run-time exception. For this purpose
run-time type identification (RTTI) feature is employed. Please
refer to Java documentation for more information on RTTI.
If you have to check whether an object can be downcasted to a
type or not, the instanceof operator may be used. For example, if
you want to identify and modify only Circles in the shapes array
in the previous example, you may use:

for(int i=0; i<shapes.length; i++)
 if(shapes[i] instanceof Circle){

Circle c = (Circle) shapes[i];
... // work with c here

 }

FİNAL METHODS AND FİNAL
CLASSES
If you do not want inheritors of your class to override some of your
methods, you can specify those methods can not be overridden by
using final keyword as:

class MyClass{
 …
 final int aFinalMethod(){
 …
 }
 …
}

Like final methods, you may also declare a final class. If you
declare a class as final, no class can inherit from it by any means.

final class MyFinalClass{
 …
}

ABSTRACT CLASSES
Consider our previous shapes example shown below:

In this scenario, the superclass Shape provides a common interface
to its subclasses, so that polymorphism applies. However, the
scale method in the Shape class does nothing and its actual
implementation is leaved to subclasses. Another important fact
about the Shape class is that, no meaninful instances of it can be
created. In the Java Programming Language, some methods of a
class may be declared as abstract and if a class has abstract
methods, the class itself becomes an abstract class. If a method is
declared as abtract, there is no need to implement that method,
and you force subclasses to implement that method. Another
important feature is that, you cannot create an instance of an
abstract base class which solves above mentioned problem. It is
also possible to declare a class as abstract although it does not
contain any abstract methods. This also ensures that meaningless
instances of that class cannot be created.
A method or a class can be declared as abstract by using the
abstract keyword as:

abstract class anAbstractClass{
...

}

class aClass {
// this class is also abstract
// since it contains an abstract method

...
abstract int anAbstractMethod(int Parameter);
...

}

INTERFACES
An interface is generalization of abstract classes. The main
difference between an abstract class and an interface is that, all
methods defined in the interface are abstract whereas an
abstract class may declare and implement some methods. The
methods declared in an interface must be implemented in classes
implementing (or you may say inheriting) the interface.
Another important distinction is that, a class can have only one
superclass whereas it may implement any number of interfaces as
long as it implements all methods of those interfaces. Therefore,

it can be said that, interfaces provide some kind of multiple
inheritance which is not possible with classes.
An interface can be declared in java simply by using the interface
keyword. The following code demonstrates declaration of a simple
interface Drawable:

interface Drawable{
void draw();

};

Any class may implement the interface by specifying the interface
implemented using implements keyword, and providing
implementation of all methods of the interface. In the following
example, Circle class implements the Drawable interface:

class Rectangle extends Shape implements Drawable{
int radius;
void scale(int scaleFactor){

width *= scaleFactor;
height *= scaleFactor;

}
void draw(){

...
}

}

Like classes interfaces may also be inherited by other interfaces
using the keyword extends in interface declaration in the same
way the classes extend other classes. An interface may also
declare same member variables. All member variables declared in
an interface are inherited by the classes implementing that
interface. However, all member variables declared in an interface
are automatically static and final.

PACKAGES
It is possible to organize your classes within packages. By putting
related classes into a package, you may ease finding classes, avoid
naming conflicts, and control access to individual classes.
In the java platform, classes are located in various packages. In
order to use a specific class in a specific package in your program,
the first statement in the program must import the class as:

import java.util.ArrayList;

It is also possible to import all classes in a package using * symbol
as:

import java.util.*;

You may also create your own packages. In order to create a
package, you create a directory whose name is the same with your
package, and all files in this directory must start with the

following statement:

package <package name>;

Note: If you don’t specify a package name in a file, the classes in
that file will be in the default package.
Each file within the package declares a class as the public class
as:

public class <class name>{
...
}

By this way, that class becomes available to the package users.
Since there may be more than one file in the directory, a package
may include more than one class available for the package users.
(Some compilers allow having more than one public class in each
file. However, it is best to have only one public class in each file.)

