
CONTAİNERS
Some programs create too many objects and deal with them. In
such a program, it is not feasible to declare a separate variable to
hold reference to each of these objects. The proper way of
keeping references may be to use arrays. However, arrays has a
fixed size after they have created. So, if the number of objects
that will be created is unknown at the array creation time, you
should provide extra code to enlarge the array whenever new
objects are created. This may involve creating a larger array and
copying the elements to this array.
There is a better way of holding references to objects in the Java
platform: using The Collections Framework. The collections
framework in the Java platform includes high-performance
implementations of useful data structures and algorithms to store
and manipulate a group of objects. This increases the performance
of your programs. In addition, using a common framework reduces
the programming effort and fosters software reuse.
The collections framework consists of interfaces forming the base
of the framework and general purpose implementations of those
interfaces. There are three main container interfaces: List, Set,
and Map. The List and Set interfaces are derived from a common
interface Collection. A Collection deals with a group of
individual elements and a Map deals with a key-value pairs of
objects. The framework provides two or three implementations,
which are concrete classes, for each of these interfaces. You
choose one of these implementations according to your needs
(especially performance considerations play an important role in
choosing the proper implementation) to create a container.
Since containers only keep instances of subclasses of Object, in
order to store primitive data types, corresponding wrapper classes
of primitive data types may be used. The toString() method of
containers may be used to list elements in the container.
toString() method of a container makes use of toString()
methods of individual objects in the container to print elements
into the result.

COLLECTİONS

Collections store
and manipulate
a group of
individual
objects. The
following
diagram shows
the interfaces
and
implementations
of various types
of collections.
For the sake of
simplicity only
concrete classes
and key
interfaces are
shown in this
diagram.
There are two kinds of collections: Set and List. Set and List are
different in that a List can contain duplicate elements whereas a Set
cannot contain duplicate elements. Moreover, insertion order is
important in Lists in contrast to Sets. There are three Set
implementations TreeSet, HashSet, and LinkedHashSet, and two List
implementations LinkedList and ArrayList. The names of the classes
are of the form <implementation><interface> where implementation
indicates the underlying data structure used the hold elements and
interface indicates the type of collection. Meaning and significance of
implementation types will be discussed later.
As shown in the diagram, all classes here implement the Collection
interface. The Collection interface provides following methods:

Method Description

boolean add(Object o)
Adds object o to the collection and return true. If
the collection already contains o, does nothing
and returns false.

boolean
addAll(Collection c)

Adds all objects in collection c to this collection.
If any object is added it returns true.

void clear() Removes all elements from the collection

boolean equals(Object o)

Compares the current collection with the
specified object o. If object o is implements the
same interface (Set or List), compares two
collections for equality. Note that, in List
comparisons insertion order is important and in
Set comparisons, both collections must have the
objects equal to each other.

Iterator iterator()
Returns an iterator over the objects in the
collection (Iterators will be discussed in the next
section).

boolean contains(Object
o)

Returns true if object o is contained in the
collection.

boolean
containsAll(Collection
c)

Returns true if all objects in collection c is in the
current collection.

boolean isEmpty() Returns true if the collection has no objects.

boolean remove(Object o)
Removes the specified object from the collection.
Returns false if the collection does not have that
object.

boolean
removeAll(Collection c)

Removes all objects in collection c from the
current collection. If any object is removed, it
returns true.

boolean
retainAll(Collection c)

Removes all objects in the current collection
which are not in the collection c. Returns true if
any object is removed.

int size() Returns the number of objects in the current
collection

Object[] toArray() Returns an array containing all objects in the
current collection.

Object[]
toArray(Object[] a) Returns an array of the same type with a.

Set interface adds nothing to Collection interface. However, List
interface defines and overloads some methods which allow indexed
access to objects. In the following index varies between 0 and
size()-1.

Method Description

boolean add(Object o)
void add(int index,
Object o)

Adds specified object to the list at the specified
index. If the index is not specified, adds object to
the end of the list.

boolean
addAll(Collection c)
void addAll(int index,
Collection c)

Inserts all objects in the specified list to the
current list starting from the specified index. If
the index is not specified, objects are appended
to the list.

Object get(int index) Returns the object at the specified index.

Object set(int index,
Object o)

Returns the object at the specified index, and
replaces it with the specified object.

int indexOf(Object o)
int lastIndexOf(Object
o)

Returns the index of the first/last occurrence of
the specified object in the list. Returns -1 if the
object o is not contained in the list.

ListIterator
listIterator()
ListIterator
listIterator(int index)

Returns a list iterator over the objects in the list
starting from the position index if specified.
(Iterators will be discussed in the next section).

List subList(int
fromIndex, int toIndex)

Returns a portion list having objects from the
current list at positions fromIndex..toIndex-1.
Note that any operations made to returned list is
also made in the current list. This is useful for
carrying out bulk operations on the list (e.g.
remove all elements between the specified
indexes).

ITERATORS
An Iterator is an object which enables you to move through a
sequence regardless of the underlying implementation of the
collection. By this way, you can access individual objects
contained in the collection. All List and Set implementations
provide a method to get an iterator. By using this iterator, objects
may be accessed one by one calling the next() method and if
desired current object may be removed by calling the remove()
method of the Iterator. The Iterator also provide hasNext()
method to check whether the end of list is reached.
List implementations also return more powerful ListIterators to
navigate within the List back and forth. The ListIterator
interface defines the methods add(), hasPrevious(), previous(),
nextIndex(), previousIndex(), and set(Object o) in addition to
next(), hasNext(), and remove().

MAPS
A Map is a container which maps keys to values. A Map cannot
contain duplicate key objects, and each key object maps onto only
one value object. All Map implementations implement the Map
interface and there are three mostly used Map implementations:
TreeMap, HashMap, and LinkedHashMap.
The Map interface defines the following methods:

Method Description

void clear() Removes all key-value pairs from the map.

boolean
containsKey(Object key) Returns true if the specified key is in the map.

boolean
containsValue(Object
value)

Returns true if the specified value is in the
map.

Set entrySet()

Returns the set of entries (key-value pairs)
within the map. Each element in the set is an
object of Map.Entry type, and getValue() and
getKey() methods of Map.Entry may be used to
access key and value of each entry.

boolean equals(Object
o)

Compares the current map with the specified
object o. If object o is implements the map
interface, it compares two maps for equality.
For equality, both maps must have the same
key-value pairs.

Object get(Object key) Returns the value mapped to the key.

boolean isEmpty() Returns true if the map contains no entries.

Set keySet() Returns the Set of keys in the map. Changes to
Set are reflected to the map and vice versa.

Object put(Object key,
Object value)

Adds specified key-value pair to the map. If the
key is already in the map, the value mapped to
key is replaced by the new one, and old one is
returned.

void putAll(Map m) Adds all mappings in the specified map m to
this map.

Object remove(Object
key)

Removes the entry corresponding to the
specified key, and returns the mapped value.

int size() Returns the number of mappings in the current
map.

Object[] toArray() Returns an array containing all objects in the
current collection.

Collection values()
Returns a collection of values in the map.
Changes to collection are reflected to map and
vice versa.

As the table shows, individual mappings within the Map may be
accessed using the entrySet() method which returns a Set, keys
and values may be accessed using the keys() and values() which
return collections. Since the returned Collection is backed by the
Map, the operations carried out on the returned Collection are
also reflected to the Map and vice versa. Moreover, it is possible to
get an Iterator over mappings, keys or values by using the
iterator() method of the returned Collection interface.

IMPLEMENTATİONS
There are five categories of implementations for collections and

maps: Array, linked list, hash, linked hash and tree. The
implementation method reflects the underlying data structure
used to hold entries. Each implementation category has its own
pros and cons. Choosing the right implementation can considerably
improve the performance of your applications.
Array implementations use an array for storing entries. ArrayList
is the mostly preferred implementation for List interface because
it offers constant time positional access. However, insertions to a
specific index and deletions may be costly since creating a new
array and/or copying existing array elements may be needed for
insertions and deletions.
LinkedList is another option to hold sequence of elements. The
LinkedList implementation use a Entry object to hold individual
objects and references to next and previous entries. Therefore,
adding elements to the beginning, and adding and removing
elements while iterating is much faster since only next and
previous fields of next and previous entries needs to be modified.
If your program frequently adds elements, remove elements, and
iterate over the elements you should consider LinkedList
implementation. But, it should be kept in mind that, positional
access is very costly in linked list implementations.
Set and Map are implemented by hash tables, trees or linked hash
tables. Tree implementations use red-black trees to keep entries
sorted within the data structure. If it is important to keep entries
ordered, TreeSet and TreeMap implementations should be
preferred. Tree implementations may use Comparable interface
provided by the classes of objects or a Comparator interface may
be provided through constructors of TreeSet and TreeMap to order
objects in the container. Wrapper classes for primitive data types,
String and Date classes implement the Comparable interface.
However, if you use your own classes your class must implement
the Comparable interface by implementing compareTo() method as:

class MyClass implements Comparable {
 ...
 public int compareTo(Object o){
 ...
 // returns -1 if this object is less than o
 // returns 0 if this object is equal to o
 // returns 1 if this object is greater than o
 }
 ...
}

While declaring your classes implementing comparable interface,
you should make sure that the fields used in the comparison are
immutable (do not change after creation). Otherwise, Map or Set
may break as the objects’ state change after they are put into the
container.
If your objects do not implement Comparable interface you may
create a class implementing Comparator interface as:

class MyComp implements Comparator{
 int compare(Object o1, Object o2){
 ...
 // returns -1 if o1 is less than o2
 // returns 0 if o2 is equal to o2
 // returns 1 if o1 is greater than o2
 }
}

Then you can create an instance of this class and pass it to the Set
or Map constructor as:

TreeSet s = new TreeSet(new MyComp());

TreeSet and TreeMap also implements the SortedSet and SortedMap
interfaces, respectively. These interfaces define useful functions
to access individual element (or set of elements with a given
criterion) in the Set or Map quickly. For more information about
sortedSet and SortedMap interfaces refer to the Java
documentation.
Hash based implementations uses hashCode() function, which
return an integer value, provided by the objects to locate objects
within the underlying data structure. Therefore, HashSet and
HashMap is much faster than the TreeSet and TreeMap. However,
ordering objects in the data structure is arbitrary, i.e., order is not
preserved. If entry ordering is not important and performance is
the main concern, hash implementations should be preferred.
Linked hash based implementations preserve the order of insertion
while using hashes for better performance.

COLLECTİONS CLASS
Collections class provides many useful methods that can operate
on collections. Since the methods are declared as static you do not
need to create an instance of Collections class to make use of its
services. Most of the methods operate on Lists such as sort (to
sort objects within a List), binarySearch (searching an object
within a List which is sorted before in ascending order), shuffle
(randomly permute objects within the List), copy (copy objects
from one List to another), reverse (reverse the ordering within a
List), rotate (rotate the order of objects within a List by the
specified distance), etc.
There are also methods to return a synchronized (thread-safe),
and immutable versions of containers of different types.
For further information about the Collections class please refer
to the Java documentation.

