
ERROR HANDLİNG
All possible errors in a program may not be detected at the
compile time. For example, what happens if numberOfItems is zero
in the following statement?

double unitPrice = totalPrice/numberOfItems;

You may make sure that numberOfItems is not zero by checking
whether it is zero first as:

double unitPrice = 0;
if(numberOfItems!=0) unitPrice = totalPrice/numberOfItems;

This seems well. However, is it a good way of handling such a
potential error? No! Because the statements following the above
code may use unitPrice and produce a meaningless result if the
numberOfItems is zero. So, it is better to stop executing the
remaining statements which uses unitPrice and handle the case in
any other context where necessary action could be taken. This
may require enclosing the statements using the unitPrice in the if
statement and providing an else part to handle the error. However,
if more such errors may occur in the code, providing if-else
statements for each may cause your code to become spaghetti
code which may be difficult to understand and modify.
Exception handling mechanism provides a structured means of
dealing with such errors in the programs. When such an error
occurs, exception handling mechanism will return meaningful
information about error and terminates the execution of
statements until the error is handled by a special code called
exception handler which enables you to perform certain actions
before going further. This is done by creating an object containing
the detailed information about the error including its type and the
state of the program when it occurs. Then the runtime system
finds a handler for the error and passes this object to the handler.

TRY BLOCK AND METHOD
EXCEPTİON SPECİFİCATİON
The simple exception handling includes specifying guard regions
with try block and providing exception handlers with catch blocks.
The exception object is supplied to the exception handling as the
normal method parameter. The type of the exception object may
simply be chosen as the Exception (as it will be explained shortly).
This example illustrates the simplest way you deal with
exceptions:

try {
 ...
} catch (Exception e) {
 ...
}

Exception handling mechanism allows you to separate program
logic from error-handling to produce more clear and traceable
code. It can also propagates errors up to the call stack. That is, if
a method causes an error, the methods calling that method is
searched for a handler. Therefore, you don’t need to return
complex error codes from the methods, deal with error codes
returned from the method calls in the callers. The following code,
illustrates this feature:

method1(){
 ...
 // an error occurs here, execution is stopped.
 ...
}
method2(){
 ...
 method1();
 // since method1 causes an error execution is stopped
here
 // because method2 does not have an error handler
 ...
}
method3(){
 ...
 try{
 method2();
 ...// these statements are not executed
 ...//since method2 causes an error
 } catch(Exception e) {
 ...
 // error is handled here – execution continues from
here
 }
 // execution continues normally
 ...
}

Throwable class is the
superclass of all
exceptions and errors in
the Java Programming
Language. Only objects of
instances of Throwable or
its subclasses may be
thrown in a program. The
high level hierarchy of
classes for exceptions and
errors is shown in the
figure.
Error corresponds to serious errors (compile time or system), so
you usully do not catch such exceptions. The standard exceptions
thrown by any method are the instances of subclasses of the
Exception class (or its subclasses as well). Most of the time, you
deal with such exceptions.

The exception object’s type name indicates the type of error
which has occurred. Some of the exceptions are derived from
RuntimeException class (e.g. NullPointerException – thrown when
an application tries to use a null value in case an object is
required) and some of them are derived directly from Exception
class (e.g. IOException and its subclasses – thrown when an error
occurred during input/output operations). For detailed
information about the exceptions that may be thrown, please
refer to the Java documentation.
In the Java Programming Language, you must specify which
exceptions (except the exceptions handled in the method and
exceptions of the type RuntimeException and its subclasses) may
be thrown by a call to a method in method declaration. If you do
not handle an exception in method body or specify its type in
method declaration, the compiler checks your method
implementation and forces you to specify potential exceptions in
method specification. By this way, you inform the users of your
method to know which kinds of exceptions they should deal with.
For this purpose throws keyword can be used as:

void myMethod(...) throws ExceptionType1, ExceptionType2, …,
ExceptionTypeN {
 ...
}

EXCEPTİON HANDLERS
Any exception thrown at runtime may be caught and handled in
exception handlers. The exception handlers follow the try block
and takes an exception object as the parameter. If your code may
throw more than one kind of exception, you may discriminate
between them by using more than one handlers as:

try{
 ... // some code which may throw exceptions
} catch(ExceptionType1 e1) {
 ... // handle ExceptionType1
} catch(ExceptionType2 e2) {
 ... // handle ExceptionType1
} catch(ExceptionType3 e3) {
 ... // handle ExceptionType1
}
 ... // execution continues from here after exception
handler is executed

If an exception occurs, the correct exception handler is found and
executed according to the type of the exception object thrown.
Note that exception handlers’ order is important. If you handle a
more general exception (a superclass) before a specific exception
(its subclass), the remaining handlers will become meaningless and
compiler warns you. If you want to handle all kinds of exceptions
in one handler you may simply handle Throwable (as Throwable is
the root superclass of all exception classes).
Each exception object thrown carries information about the type

of error occurred, state of the program at the time of error, and a
small message (these features are inherited from Throwable). The
exception object’s getMessage(), toString(), and
getStackTrace() may be used to get information about the error
in the exception handler.

FİNALLY BLOCK
When you want to execute some code regardless of exception
occurred or not, you may use finally block. The finally block is
usually used to clean up before the execution continues after the
try block and exception handlers (to release system resources
allocated in try block, etc.).
The finally block can be added as:

try{
 ...
} catch(ExceptionType1 e1) {
 ...
} catch(ExceptionType1 e1) {
 ...
} finally {
 ... // always executed before execution continues with
the next statement
}

CREATİNG AND THROWİNG
EXCEPTİONS
In order to throw an exception you may create an exception
object from the existing exception classes and throw it using throw
keyword as:

throw new ExceptionType("a message");

It is also possible to create your own exception classes if there is
no suitable exception class to use. In order to create a new
exception class you create a subclass of an existing exception class
(it should at least be descendant of Throwable). The following
code illustrates how to create a new exception class from
Exception class:

class MyException extends Exception{
MyException() {}
MyException(String message) { super(message); }

}

Here, you may provide additional functionality in MyException
class to give more information about the error occurred. After you
declare MyException it may be thrown and catched as:

try{
 ...
throw new MyException("a message");

 ...
} catch(MyException e){
 ...
}

