
INPUT AND OUTPUT       
The Java Platform supports different kinds of information sources 
and information sinks. A program may get data from an 
information source which may be a file on disk, a network 
connection, another program, standard input (e.g. keyboard), etc. 
Similarly a program may send data to an information sink which 
may be a file on disk, a network connection, another program, 
standard output (e.g. monitor), etc. In the Java I/O system, 
streams can be used to get and put information from an 
information source or to an information sink. 
Streams support either sequential read from an information 
source or sequential write to an information source. Regardless of 
the type of information source or sink, read and write operations 
are almost same. In order to read data from an information source 
you first create a stream by specifying the information source. 
Then, you read data as long as there is more data. Finally, you 
close the stream. Similarly, in order to write data to an 
information sink you first create a stream by specifying the 
information sink. Then, you write data as long as there is more 
data. Finally, you close the stream. 
There are actually two kinds of streams: byte oriented and 
character oriented. Byte oriented streams write bytes to a stream 
and read bytes from a stream. According to the direction of 
information flow, input streams or output streams are used for 
byte oriented streams. Input and Output streams are used when 
binary data is to be read and written. On the other hand, 
character oriented streams write characters to a stream and read 
characters from a stream. Readers and writers are used when 
using text based input and output (with proper encoding). 
According to the direction of information flow, readers or writers 
are used for character oriented streams. 
Stream classes are implemented in java.io package. So, in order to 
use streams classes without package names, your program must 
have the following imports statement at the top: 

import java.io.*;

STREAMS 
InputStream and OutputStream are the superclasses for input and 
output streams, respectively. The specialized subclasses of these 
classes provide necessary implementation for different kinds of 
streams. Some of those specialized subclasses are as follows: 



InputStream OutputStream Source/Sink Type

FileInputStream FileOutputStream
A File on disk. File 
name can be passed 
to the constructor. 

ByteArrayInputStream ByteArrayOutputStream

A byte array in 
memory. A buffer of 
type byte array can 
be passed to the 
constructor.

PipedInputStream PipedOutputStream

Another thread 
(connect 
PipedInputStream to 
PipedOutputStream 
before 
reading/writing bytes 
). Anything written 
from 
PipedOutputStream 
can be read from 
PipedInputStream.

InputStream defines three methods to read data bytes as: 
Method Description

int read() reads next byte from the stream.

int read(byte[] b)

reads k<=b.length bytes from the stream and 
returns the total number of bytes read. If there 
is enough data, stream fills the buffer b, 
otherwise stream puts bytes read starting from 
b[0].

int read(byte[] b, int 
offset, int length)

reads k<=length bytes from the stream, puts 
those bytes starting from b[offset], and returns 
the total number of bytes read. 

If the end of stream is reached, the read method returns -1. It is 
also possible to learn how many bytes can be read from the stream 
using available() method. 
Similarly OutputStream defines three methods to write data bytes 
as: 

Method Description

void write(int b) writes (byte)b to the stream.

void write(byte[] b) writes b.length bytes in b to the stream.

void write(byte[] b, 
int offset, int length)

writes length bytes in b starting from b[offset] 
to the stream. 

In the following, a simple example program to copy a file on disk 
to a new file using streams is shown: 

import java.io.*;
public class CopyFile {
    public static void main(String[] args) throws 
IOException{
        FileInputStream in = new 
FileInputStream("input.txt");



        FileOutputStream out = new 
FileOutputStream("output.txt");
        byte b[] = new byte[8192];
        int length;
        while((length = in.read(b))>0) out.write(b, 0, 
length);
        in.close();
        out.close();    
    }
}

Note that, stream related operations may raise an IOException. 
Therefore, you should either handle IOExceptions or specify 
IOException in method declaration. 

FİLTERED INPUT AND 
FİLTERED OUTPUT 
The InputStream and OutputStream only provide necessary 
functionality for reading from and writing to streams. Filter 
streams, which accept an InputStream or an OutputStream as an 
argument to their constructors, enhance the functionality 
provided by these streams. Some of the filter streams that can be 
used are as follows: 

Filter Stream Constructor Arguments Behavior

DataInputStream InputStream
Allows reading primitive 
data types and Strings 
from input stream. 

BufferedInputStream InputStream and 
(optional) buffer size

Does buffered reading for 
improved reading 
performance.

PushbackInputString
InputStream and 
(optional) pushback 
buffer size

Enables unreading of 
read bytes

DataOutputStream OutputStream
Allows writing primitive 
data types and Strings to 
input stream. 

BufferedInputStream OutputStream and 
(optional) buffer size

Does buffered writing for 
improved reading 
performance.

PrintOutputString

OutputStream, 
(optional) auto flashing 
enabled, (optional) 
encoding

Enables writing primitive 
data types and strings to 
output stream in text 
format.

An InputStream or OutputStream is usually wrapped by a filter 
stream to have a more useful interface. For example, the 
following code illustrates wrapping a FileOutputStream with a 
DataOutputStream to write primitive data types to a file: 

DataOutputStream s = new DataOutputStream(new 
FileOutputStream("test.dat"));



Then, it is possible to write primitive data types to the stream 
using writeXXX(value), where XXX is the primitive data type name 
(like Integer, Char, Float, Double, etc). 

READERS AND WRİTERS 
Readers and Writers implement the similar functionality with 
InputStream and OutputStream with one exception: they work with 
characters instead of bytes. Reader and Writer are the 
superclasses for character oriented (text based) input and output 
streams, respectively. The specialized subclasses of these classes 
provide necessary implementation for different kinds of streams. 
Some of those specialized subclasses are as follows: 

Reader Writer Source/Sink Type

FileReader FileWriter A File on disk. File name can be 
passed to the constructor. 

CharArrayReader CharArrayWriter
A char array in memory. A buffer of 
type char array can be passed to 
the constructor.

StringReader StringWriter

String in memory. A string can be 
passed to the constructor of 
StringReader and an initial size can 
be passed to the constructor of 
StringWriter.

PipedReader PipedWriter

Another thread (connect 
PipedReader to PipedWriter before 
reading/writing characters). 
Anything written from PipedWriter 
can be read from PipedReader.

Like InputStream, Reader defines three methods to read 
characters as: 

Method Description

int read() reads next byte from the stream.

int read(char[] b)

reads k<=b.length characters from the stream 
and returns the total number of characters 
read. If there is enough data, stream fills the 
buffer b, otherwise stream puts characters 
read starting from b[0].

int read(char[] b, int 
offset, int length)

reads k<=length characters from the stream, 
puts those characters starting from b[offset], 
and returns the total number of characters 
read. 

If the end of stream is reached, the read method returns -1. It is 
also possible to learn how many characters can be read from the 
stream using available() method. 
Writer defines five methods to write characters and strings as: 



Method Description

Void write(int b) writes (char)b to the stream.

void write(char[] b) writes b.length characters in b to the stream.

void write(char[] b, 
int offset, int length)

writes length characters in b starting from 
b[offset] to the stream. 

void write(String s) writes string s to the stream. 

void write(String s, 
int offset, int length)

writes length characters in string s starting 
from character at position offset to the 
stream. 

It is also possible to have a more useful interface by wrapping 
readers and writers by other Reader and Writer classes. For 
example, by wrapping a reader with BufferedReader you can read 
strings in addition to characters and character arrays. For 
example, the following code wraps a FileReader in 
BufferedReader to read strings line by line and prints lines to the 
screen: 

BufferedReader r = new BufferedReader(new 
FileReader("textfile.txt"));
String s;
while((s=r.readLine())!=null) System.out.println(s);

InputStreamReader and OutputStreamWriter classes provide a 
mechanism to wrap InputStreams and OutputStreams in Readers 
and Writers for text based I/O. 

STANDARD I/O 
Java provides three streams for standard I/O: System.in, 
System.out, and System.err. Since System.out and System.in are 
prewrapped by PrintStreams, any primitive type and strings can 
be directly written to the console using print(...) and 
println(...) methods. However, System.in is in InputStream 
form, and in order to read strings from the standard input (e.g. 
keyboard) System.in is usually wrapped by BufferedReader and 
InputStreamReader (to convert a stream interface to reader 
interface) before reading. The following code illustrates the 
reading from standard input and writing to standard output using 
System.in and System.out: 

import java.io.*;
public class Echo {
    public static void main(String[] args) throws Exception{
        BufferedReader in = new BufferedReader(new 
InputStreamReader(System.in));
        String s;
        while(((s=in.readLine())!=null) && (s.length()>0)) 
            System.out.println(s);
    }
}

The above program echoes the lines entered from standard input 



to standard output until an empty line is entered. 

OBJECT SERİALİZATİON 
Object serialization enables you to convert an object into series of 
bytes, and reconstruct the object from series of bytes. The 
instances of classes implementing Serializable interface can 
automatically be converted to bytes and can automatically 
reconstructed from the bytes. To make the a class serializable, 
you could just add implements Serializable to the class 
declaration as: 

class MySerializableClass implements Serializable {
    ...
}

Since there is no method in Serializable interface, you do not 
need to implement anything. However, care should be taken when 
declaring member variables of the class. It may not be possible to 
serialize some sensitive data (such as a file handle). For such 
variables you can simply add transient keyword to avoid 
serialization of that variable as: 

transient DataType VariableName;

Objects implementing the Serializable interface can be written 
to and read from streams using ObjectOutputStream and 
ObjectInputStream wrappers as: 

ObjectOutputStream out = new ObjectOutputStream(new 
FileOutputStream("output.dat"));
ObjectInputStream in = new ObjectInputStream("input.dat"));
Object obj;
while((obj=in.readObject())!=null) out.writeObject(obj);
in.close();
out.close();


