METU Informatics Institute
Min720

Pattern Classification with Bio-Medical Applications

Part 7:

Linear and Generalized Discriminant
Functions



LINEAR DISCRIMINANT FUNCTIONS

Assume that the discriminant functions are linear functions of X.
g(X)=wx, +w,x, +....+w x +w_
=W'X +w,
I T
W =lw..... wn]

X = :xl .......... X, ]T

T
W, = [w1 Wyeoerod W WO] a-augmented

a

augmented pattern vector and weight factor.



Linear discriminant function classifier:

« It's assumed that the discriminant functions (g’s)are linear.

* The labeled learning samples only are used to find best linear
solution.

« Finding the g is the same as finding Wa.

« How do we define ‘best’? All learning samples are classified
correctly?

« Does a solution exist?



Linear Separability
Y

63 XOR Problem
Not linearly separable

Solution 2

Many or no solutions possible



2 class case: -q.,=
X, =2 — 9179 0

R, The decision
R, boundaries are lines,
g(x)<0 planes or hyperplanes.
y Our aim is to find
W'Y =0 gx)>0 best g.
4
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Where X is a point on the boundary (g;=g,)

g(X)= [Wal _Waz]TYZO
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W,

gX) =8 (1)=&, (Y) gy single disriminant function is

enoughl!



W, 'Y =0 on the boundary.

or W'X+w =0 is the equation of the line for 2 feature
problem..

g(x)>0 in R, and g(x)<0inR,
Take two points on the hyperplane, X; and X,

W'Y, =W'Y,=0

WT(XI—X2)+/O —/0 =0

W is normal to the hyperplane.

X . g(x)  Show!
o R L Hint: g(X,)=0
™ G g>0 HWH int: g(%)
2 g(x) is proportional to the
B . distance of X to the hyperplane.
R, 9=
g<0 4= distance from origin to
Hw‘ the hyperplane.




* What is the criteria to find W?
1. For all samples from c1, g>0, WX>0
2. For all samples from c2, g<0 WX<0

« That means, find an W that satisfies above if there is one.
« Tterative and non iterative solutions exist.



If a solution exists-the problem is called “linearly separable” and
W, is found iteratively. Otherwise "not linearly separable”
piecewise or higher degree solutions are seeked.

Multicategory Problem
“* Many to one
% Pairwise

< One function/category &; = WiX+ Wio

} Results with undefined regions

Many to one

undefined regions




pairwise

one function/category




Approaches for finding W: Consider 2-Class Problem
« For all samples in category 1, we should have

w X, >0
« And for all samples in category 2, we should have
w'X <0

« Take negative of all samples in category 2, then we need
w X >0 for all samples.

Gradient Descent Procedures and Perceptron Criterion
* Find a solution to
w X, >0
« Ifitexists for alearning set (X:labeled samples)
» Iterative Solutions
» Non-iterative Solutions



Iterative: start with an initial estimate and update it until a
solution is found.

I
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Gradient Descent Procedures:

Iteratively minimize a criterion function J(w).
Solutions are called "gradient descent” procedures.
« Start with an arbitrary solution.

+ Find VJ(w(l)) - gradient

* Move towards the negative of the gradient

w(k +1) =w(k)—n(k)VJ (w(k))

Learning rate




. Continue until n(k)VJ(w(k) <8

«  What should 7] be so that the algorithm is fast?
Too big: we pass the solution
Too small: slow algorithm

J(a)-criterion we
want to minimize.




Perceptron Criterion Function

J, (W)= (~w'y)

yeY

*Where Y is the set of misclassified samples. {J, is proportional to
the sum of distances of misclassified samples to the decision
boundary.}

VJ, =2 (=)
yeY
Hence w, ,=w, +77(k)z y

yeY

=

Sum of misclassified
samples

Batch Perceptron Algorithm
Initializew, 7 ,k«— 0, 6
Do k«— k+1

we— w+ (k)Y
Until [7(k)> v |<8
refurn w.
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Assume linear separability.

PERCEPTRON LEARNING

An iterative algorithm that starts with an initial weight vector and
moves it back and forth until a solution is found, with a single
sample correctign.
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Single Step Fixed-Increment Rule for 2-category Case
STEP 1. Choose an initial arbitrary W ,(0).

STEP 2. Update W, (k) {kth iteration} with a sample X" € C, as
follows (i'th sample from class 1)

w (k) W, (k)X 5~ >0

W, (k+1)= i T i
W (k)+nX, W (k)X, <0

If the sample X* € C, , then
w (k) W' (k)X <0
w,(k)-nXx," W, ()X, >0

a

Wa(k+1)={

STEP 3. repeat step 2 for all samples until the desired inequalities
are satisfied for all samples.

17 - A positive scale factor that governs the stepsize. if 1], =17]
fixed increment. We can show that the update of W tends to push
it in the correct direction (towards a better solution).



W' (k+1) =W, (k)+77X1’
Multiply both sides with X

Wl k+ D)X =W (k)X " +px X" >, "X
i

!
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*Rosenblatt found in 50's.

*The perceptron learning rule shown by Rosenblatt is to converge in
a finite number of iterations.

EXAMPLE (FIXED INCREMENT RULE)
Consider a 2-d problem where

! :{8})(12 _ _5_,X13 :{9} eC,
3 1 0

1
Y2 = 3 ’Xzzz_o_’Xz.%: 3 eC,
1 3 6
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X 2=|1
_1_
=
X =|1
_1_
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Xa22 _ 3
_1_

one solution



Step 1. Assume_V_Va(O):[O 0 of

Step 2. 8
W (0)3]=0

1

So update

w(1)=W(0)+|3

5
8 3 1]1|>0
I

> ()



o
5 2 0]3]>0
_1_
51 [o] [5
2|1—-13|=|-1
0] | 1] |—-1]
=
5 -1 —-1]6|>0
_1_
5 2
~1|-|6|=|-7
__1_ I __2_

continue by going back to the first sample and iterate in this
fashion.



SOLUTION:

m W Wo d
W=[3 -6 —5}

a

Equation of the boundary:
g(X)=3x,—6x,—5=0 on the boundary.

Extension to Multicategory Case
Class 1 samples { X', X" oo X'
Class 2 samples (X', X**,............... X"

I ye2 ' .
Class ¢ samples { X *, X oo, X

no+n, +....... +n, =n total number of samples
We want to find g,......... ,g, or corresponding W, ,W,

so that g = I/I/;TXik > [/I/}TXik

Foralli # j and 1<k <n,



The iterative single-sample algorithm

STEP 1. Start with random arbitrary initial vectors
W, (0),W,(0),........ W.(0)

STEP 2. Update W;(k) and W/(k) using sample X' as below:
k -kTXiS .kTXiS
w ks ny= 8 WX WGk
W(k)+a(k)X" otherwise
w.k) W.(k) X*>W. (k) X"
W (k+1)= ) (k) . it ).
/ W.(k)-a(k)X" otherwise
Do for dll j.

STEP 3. Go to 2 unless all inequalities are satisfied and repeat for
all samples.




GENERALIZED DISCRIMINANT FUNCTIONS
When we have nonlinear problems as below:

Then we seek for a higher degree boundary.
Ex: quadratic boundary

g(X)= ZZwyxixj +Zwl.xl. + W,

will generate hyperquadratic boundaries.
g(X) still a linear function w's.

g¥)=wY,
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Then, use fixed increment rule as before using W, and Y, as
above.

EXAMPLE: Consider 2-d problem,
g(X)=w,x +w,x,"+w, ageneral form foran ellipse.

g(X)=[w, w, wJ]x’| so update your samples as Ya and
iterate as before . 1




Variations and Generalizations of fixed increment rule
» Rule with a margin

» Non-seperable case: higher degree perceptrons

> : Neural Networks

> Non-iterative procedures: Minimum-squared Error
» Support Vector Machines

Perceptron with a margin
Perceptron finds "any" solution if there's one.

Solution region
with margin b




*A solution can be very close to some samples since we just check if
g(X)=W'X, >0

But we believe that a plane that is away from the nearest samples
will generalize better (will give better solutions with test samples)
so we put a margin b we say

WX, >b (g(X) =z]w))

*Restricts our solution region. Distance from the
separating plane

*Perceptron algorithm can be modified to replace O with b.
“Gives best solutions if the learning rate 1] is made variable and

1
n(k) ~ z

*Modified perceptron with variable increment and a margin:
-if W'X,<b then W—W+nk)X,
Shown to converge to a solution W.



NON-SEPARABLE CASE-What to do?
Different approaches

1- Instead of trying to find a solution that correctly classifies all
the samples, find a solution that involves the distance of "all”
samples to the seperating plane.

Instead of W' Y >0
Find a solution to wT Y. =b,

\O where b, > 0 (margin)

o

2-It was shown that we can increase the feature space dimension
with a nonlinear transformation, the results are linearly separable.
Then find an optimum solution.(Support Vector Machines)

3. Perceptron can be modified to be multidimensional -Neural Nets



Minimum-Squared Error Procedure
Good for both separable and non-separable problems

W'Y, =b, for the ith sample where Y, is the augmented feature
vector.

T

=~

Y. :
Consider the sample matrix A =| (For n samples A is dxn))

Then AW=B b,

cannot be solved since many equations, but not enough unknowns.
(many solutions exist;more rows than columns)

So find a W so that
| AW —B| is minimized.



Well-known least square solution (from the gradient and set it
zero)
W=[4"4]"' 4"B
A'B

\_Y_I
Pseudo-inverse if ATA is non-singular (has an inverse)

B is usually chosen as

B=[11..... 117 (was shown to approach Bayes discriminant when
n— oo )



