METU Informatics Institute Min720

Pattern Classification with Bio-Medical Applications

Part 7:

Linear and Generalized Discriminant Functions

LINEAR DISCRIMINANT FUNCTIONS

Assume that the discriminant functions are linear functions of X .

$$
\begin{aligned}
g(X) & =w_{1} x_{1}+w_{2} x_{2}+\ldots .+w_{n} x_{n}+w_{o} \\
& =W^{T} X+w_{0} \\
W & =\left[w_{1} \ldots \ldots w_{n}\right]^{T} \\
X & =\left[x_{1} \ldots \ldots \ldots x_{n}\right]^{T}
\end{aligned}
$$

We may also write g in a compact form as:

$$
\begin{aligned}
g(X)=W_{a}^{T} X_{a}=W_{a}^{T} Y & \text { where } Y=X_{a}=\left[x_{1} \ldots x_{n} 1\right] \\
W_{a}=\left[w_{1} w_{2} \ldots \ldots w_{n} w_{0}\right]^{T} & \text { a-augmented }
\end{aligned}
$$

augmented pattern vector and weight factor.

Linear discriminant function classifier:

- It's assumed that the discriminant functions (g's)are linear.
- The labeled learning samples only are used to find best linear solution.
- Finding the g is the same as finding Wa.
- How do we define 'best'? All learning samples are classified correctly?
- Does a solution exist?

Linear Separability

XOR Problem

Not linearly separable

How do we determine W_{a} ?

Many or no solutions possible

The decision boundaries are lines, planes or hyperplanes. Our aim is to find best g.

$$
\overbrace{W_{a 1}^{T} X_{a}}^{g_{1}}=\overbrace{W_{a 2}^{T} X_{a}}^{g_{2}}=W_{a 2}^{T} Y
$$

Where X is a point on the boundary $\left(g_{1}=g_{2}\right)$

$$
\begin{aligned}
& g(X)=\underbrace{\left[W_{a 1}-W_{a 2}\right]^{T} Y=0}_{\mathrm{W}_{a}} \\
& g(X)=g_{1}(Y)-g_{2}(Y)
\end{aligned}
$$

a single disriminant function is
enough!
$W_{a}^{T} Y=0$ on the boundary.
or $W^{T} X+w_{o}=0$ is the equation of the line for 2 feature problem..
$g(x)>0$ in $R_{1} \quad$ and $\quad g(x)<0$ in R_{2}
Take two points on the hyperplane, X_{1} and X_{2}

$$
\begin{aligned}
& W^{T} Y_{1}=W^{T} Y_{2}=0 \\
& W^{T}\left(X_{1}-X_{2}\right)+w_{o}-w_{o}=0
\end{aligned}
$$

W is normal to the hyperplane.

$$
r=\frac{g(x)}{\|w\|} \quad \text { Show! } \quad \text { Hint: }\left(X_{p}\right)=0
$$

$g(x)$ is proportional to the distance of X to the hyperplane.
$d=\frac{w_{o}}{\|w\|} \quad \begin{aligned} & \text { distance from origin to } \\ & \text { the hyperplane. }\end{aligned}$

- What is the criteria to find W?

1. For all samples from $c 1, g>0, W X>0$
2. For all samples from $c 2, g<0 W X<0$

- That means, find an W that satisfies above if there is one.
- Iterative and non iterative solutions exist.

If a solution exists-the problem is called "linearly separable" and W_{a} is found iteratively. Otherwise "not linearly separable" piecewise or higher degree solutions are seeked.

Multicategory Problem

* Many to one
* Pairwise

Results with undefined regions
\therefore One function/category $\quad g_{i}=W_{i} X+w_{i o}$

Many to one
undefined regions

one function/category

Approaches for finding W: Consider 2-Class Problem

- For all samples in category 1, we should have

$$
W_{a}^{T} X_{a}>0
$$

- And for all samples in category 2, we should have

$$
W_{a}^{T} X_{a}<0
$$

- Take negative of all samples in category 2, then we need

$$
W_{a}^{T} X_{a}>0 \quad \text { for all samples. }
$$

Gradient Descent Procedures and Perceptron Criterion

- Find a solution to

$$
W_{a}{ }^{T} X_{a}>0
$$

- If it exists for a learning set (X :labeled samples)
$>$ Iterative Solutions
> Non-iterative Solutions

Iterative: start with an initial estimate and update it until a solution is found.

Gradient Descent Procedures:

Iteratively minimize a criterion function $J(w)$.
Solutions are called "gradient descent" procedures.

- Start with an arbitrary solution.
- Find $\nabla J(w(1))$ - gradient
- Move towards the negative of the gradient

$$
w(k+1)=w(k)-\eta(k) \nabla J(w(k))
$$

- Continue until $\eta(k) \nabla J(w(k)<\theta$
- What should η be so that the algorithm is fast?

Too big: we pass the solution
Too small: slow algorithm

Perceptron Criterion Function

$$
J_{p}(w)=\sum_{y \in Y}\left(-w^{T} y\right)
$$

-Where Y is the set of misclassified samples. $\left\{J_{p}\right.$ is proportional to the sum of distances of misclassified samples to the decision boundary.\}

$$
\nabla J_{p}=\sum_{y \in Y}(-y)
$$

Hence $w_{k+1}=w_{k}+\eta(k) \sum_{y \in Y} y$
Sum of misclassified
samples

Batch Perceptron Algorithm

Initialize $w, \eta, k \longleftarrow 0, \theta$
Do $k \longleftarrow k+1$
$\mathrm{w}-\mathrm{w}+\eta(k) \sum Y$
Until $\left|\eta(k) \sum y\right|<\theta$
return w.

Assume linear separability.

PERCEPTRON LEARNING

An iterative algorithm that starts with an initial weight vector and moves it back and forth until a solution is found, with a single sample correction.

Single Step Fixed-Increment Rule for 2-category Case

STEP 1. Choose an initial arbitrary $W_{a}(0)$.
STEP 2. Update $\mathrm{W}_{\mathrm{a}}(\mathrm{k})\left\{\mathrm{k}^{\text {th }}\right.$ iteration $\}$ with a sample $X^{1 i} \in C_{1}$ as follows (i^{\prime} th sample from class 1)

$$
W_{a}(k+1)=\left\{\begin{array}{c}
W_{a}(k) \quad W_{a}^{T}(k) X_{a}{ }^{1 i}>0 \\
W_{a}(k)+\eta X_{a}{ }^{1 i} \quad W_{a}^{T}(k) X_{a}{ }^{1 i} \leq 0
\end{array}\right.
$$

If the sample $X^{2 i} \in C_{2}$, then

$$
W_{a}(k+1)=\left\{\begin{array}{c}
W_{a}(k) \quad W_{a}^{T}(k) X_{a}^{2 i}<0 \\
W_{a}(k)-\eta_{k} X_{a}^{2 i} \quad W_{a}^{T}(k) X_{a}^{2 i} \geq 0
\end{array}\right.
$$

STEP 3. repeat step 2 for all samples until the desired inequalities are satisfied for all samples.
η_{k} - A positive scale factor that governs the stepsize. if $\eta_{k}=\eta$ fixed increment. We can show that the update of W tends to push it in the correct direction (towards a better solution).

$$
W_{a}^{T}(k+1)=W_{a}^{T}(k)+\eta X_{a}^{1 i}{ }^{T}
$$

Multiply both sides with $X_{a}{ }^{i}$

$$
W_{a}^{T}(k+1) X_{a}^{1 i}=W_{a}^{T}(k) X_{a}^{1 i}+\underset{\substack{ \\+\mathrm{ve}}}{\eta X_{a}^{1 i^{T}} X_{a}^{1 i} \geq \mathrm{ve}^{T}} \geq W_{a}^{T}(k) X_{a}^{1 i}
$$

- Rosenblatt found in 50's.
-The perceptron learning rule shown by Rosenblatt is to converge in a finite number of iterations.

EXAMPLE (FIXED INCREMENT RULE)

Consider a 2 -d problem where

$$
\begin{aligned}
& X^{11}=\left[\begin{array}{l}
8 \\
3
\end{array}\right], X^{12}=\left[\begin{array}{l}
5 \\
1
\end{array}\right], X^{13}=\left[\begin{array}{l}
9 \\
0
\end{array}\right] \in C_{1} \\
& X^{21}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], X^{22}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], X^{23}=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \in C_{2}
\end{aligned}
$$

Augment X 's to Y 's

$$
\begin{gathered}
X_{a}^{21}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \quad X_{a}^{12}=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] \quad X_{a}^{13}=\left[\begin{array}{l}
9 \\
0 \\
1
\end{array}\right] \\
X_{a}^{21}=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] \quad X_{a}^{22}=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right] \quad X_{a}^{23}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Step 1. Assume $W_{a}(0)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T}$
Step 2.

$$
W_{a}(0)\left[\begin{array}{l}
8 \\
3 \\
1
\end{array}\right]=0
$$

So update

$$
W(1)=W(0)+\left[\begin{array}{l}
8 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
8 \\
3 \\
1
\end{array}\right]
$$

$\left[\begin{array}{lll}8 & 3 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 1 \\ 1\end{array}\right]>0 \quad\left[\begin{array}{lll}8 & 3 & 1\end{array}\right]\left[\begin{array}{l}9 \\ 0 \\ 1\end{array}\right]>0$
$\left[\begin{array}{lll}8 & 3 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]>0$ update

$$
W(4)=\left[\begin{array}{l}
8 \\
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2 \\
0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{lll}
5 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]>}
\end{gathered}>0\left[\begin{array}{l}
{\left[\begin{array}{l}
5 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{lll}
5 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
3 \\
6 \\
1
\end{array}\right]>0} \\
\end{array}\right.
$$

continue by going back to the first sample and iterate in this fashion.

SOLUTION:

$$
W_{a}=\left[\begin{array}{ccc}
w_{1} & w_{2} & w_{0} \\
3 & -6 & -5
\end{array}\right]^{T}
$$

Equation of the boundary:
$g(X)=3 x_{1}-6 x_{2}-5=0$ on the boundary.

Extension to Multicategory Case
Class 1 samples $\left\{X^{11}, X^{12}, \ldots \ldots \ldots \ldots . . . X^{1 n_{1}}\right.$
Class 2 samples $\left\{X^{21}, X^{22}, \ldots \ldots \ldots X^{2 n_{2}}\right.$

Class c samples $\left\{X^{c 1}, X^{c 2}, \ldots X^{c n_{c}}\right.$
$n_{1}+n_{2}+\ldots \ldots . .+n_{c}=n$ total number of samples
We want to find $g_{1}, \ldots \ldots \ldots, g_{c}$ or corresponding $W_{1}, W_{2} \ldots \ldots \ldots, W_{c}$ so that $\quad g_{i}=W_{i}^{T} X^{i k}>W_{j}^{T} X^{i k}$

For all $i \neq j$ and $1 \leq k \leq n_{i}$

The iterative single-sample algorithm

STEP 1. Start with random arbitrary initial vectors

$$
W_{1}(0), W_{2}(0), \ldots \ldots \ldots, W_{c}(0)
$$

STEP 2. Update $\mathrm{W}_{\mathrm{i}}(\mathrm{k})$ and $\mathrm{W}_{\mathrm{j}}(\mathrm{k})$ using sample $X^{\text {is }}$ as below:

$$
\begin{gathered}
W_{i}(k+1)=\left\{\begin{array}{cc}
W_{i}(k) \quad W_{i}(k)^{T} X^{i s}>W_{j}(k)^{T} X^{i s} \\
W_{i}(k)+\alpha(k) X^{i s} & \text { otherwise }
\end{array}\right. \\
W_{j}(k+1)=\left\{\begin{array}{cc}
W_{j}(k) & W_{i}(k)^{T} X^{i s}>W_{j}(k)^{T} X^{i s} \\
W_{j}(k)-\alpha(k) X^{i s} & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Do for all j.
STEP 3. Go to 2 unless all inequalities are satisfied and repeat for all samples.

GENERALIZED DISCRIMINANT FUNCTIONS

When we have nonlinear problems as below:

Then we seek for a higher degree boundary.
Ex: quadratic boundary

$$
g(X)=\sum \sum w_{i j} x_{i} x_{j}+\sum w_{i} x_{i}+w_{0}
$$

will generate hyperquadratic boundaries.
$g(X)$ still a linear function w's.
$g\left(Y_{a}\right)=W_{a}^{T} Y_{a}$

$$
=\underbrace{\left[\begin{array}{lllllllll}
w_{11} & w_{12} & \cdot & \cdot & \cdot & w_{1} & \cdot & \cdot & \cdot \\
w_{n} & w_{0}
\end{array}\right.}_{W_{a}} \underbrace{\left[\begin{array}{c}
x_{1}{ }^{2} \\
x_{1} x_{2} \\
\cdot \\
x_{n}{ }^{2} \\
x_{1} \\
\cdot \\
x_{n} \\
1
\end{array}\right]}_{Y_{a}}
$$

Then, use fixed increment rule as before using W_{a} and Y_{a} as above.
EXAMPLE: Consider 2-d problem,

$$
\begin{aligned}
& g(X)=w_{11} x_{1}^{2}+w_{22} x_{2}{ }^{2}+w_{0} \quad \text { a general form for an ellipse. } \\
& \qquad g(X)=\left[\begin{array}{lll}
w_{11} & w_{22} & w_{0} 0
\end{array}\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}{ }^{2} \\
1
\end{array}\right]\right. \text { so update your samples as Ya and } \\
& \text { ate as before. }
\end{aligned}
$$

Variations and Generalizations of fixed increment rule

\Rightarrow Rule with a margin
> Non-seperable case: higher degree perceptrons
> : Neural Networks
> Non-iterative procedures: Minimum-squared Error
> Support Vector Machines

Perceptron with a margin

Perceptron finds "any" solution if there's one.

- A solution can be very close to some samples since we just check if

$$
g\left(X_{k}\right)=W^{T} X_{k} \geq 0
$$

-But we believe that a plane that is away from the nearest samples will generalize better (will give better solutions with test samples) so we put a margin b we say

$$
W^{T} X_{k} \geq b \quad(g(X)=r\|w\|)
$$

-Restricts our solution region.
Distance from the separating plane
-Perceptron algorithm can be modified to replace 0 with b. - Gives best solutions if the learning rate η is made variable and

$$
\eta(k) \sim \frac{1}{k}
$$

- Modified perceptron with variable increment and a margin:
-if $W^{T} X_{k} \leq b$ then $W \leftarrow W+\eta(k) X_{k}$
Shown to converge to a solution W .

NON-SEPARABLE CASE-What to do?

Different approaches

1- Instead of trying to find a solution that correctly classifies all the samples, find a solution that involves the distance of "all" samples to the seperating plane.

$$
\begin{aligned}
& \text { Instead of } W^{T} Y_{i} \geq 0 \\
& \text { Find a solution to } W^{T} Y_{i}=b_{i} \\
& \text { where } b_{i}>0 \text { (margin) }
\end{aligned}
$$

2-It was shown that we can increase the feature space dimension with a nonlinear transformation, the results are linearly separable. Then find an optimum solution.(Support Vector Machines)
3. Perceptron can be modified to be multidimensional -Neural Nets

Minimum-Squared Error Procedure

Good for both separable and non-separable problems
$W^{T} Y_{i}=b_{i}$ for the $\mathrm{i}^{\text {th }}$ sample where Y_{i} is the augmented feature vector.
Consider the sample matrix $A=\left[\begin{array}{c}Y_{1}^{T} \\ Y_{2}^{T} \\ \cdot \\ Y_{n}^{T}\end{array}\right]$ (For n samples A is $\left.\mathrm{d} \times \mathrm{n}\right)$)

Then $A W=B$

$$
B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
b_{n}
\end{array}\right]
$$

cannot be solved since many equations, but not enough unknowns. (many solutions exist;more rows than columns)
So find a W so that
$\|A W-B\|$ is minimized.

Well-known least square solution (from the gradient and set it zero)

$$
W=\underbrace{A^{+} B}_{\left.A^{[} A^{T} A\right]^{-1} A^{T} B}
$$

Pseudo-inverse if $A^{\top} A$ is non-singular (has an inverse)
B is usually chosen as
$B=\left[\begin{array}{ll}1 & 1 . \ldots ~\end{array}\right]^{\top}$ (was shown to approach Bayes discriminant when $n \rightarrow \infty$)

