METU Informatics Institute
Min720

Pattern Classification with Bio-Medical
Applications

Part 8: Neural Networks



1- INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL

Biological Neural Networks

A Neuron:
- A nerve cell as a part of nervous system and the brain

(Figure:



Biological Neural Networks

- There are 10 billion neurons in human brain.
- A huge number of connections

- All tasks such as thinking, reasoning, learning and recognition are
performed by the information storage and transfer between
neurons

- Each neuron “fires" sufficient amount of electric impulse is
received from other neurons.

- The information is transferred through successive firings of
many neurons through the network of neurons.



Artificial Neural Networks

An artificial NN, or ANN or (a connectionist model, a neuromorphic
system) is meant to be

- A simple, computational model of the biological NN.

- A simulation of above model in solving problems in pattern
recognition, optimization etc.

- A parallel architecture of simple processing elements connected
densely.



Y1, Y, - outputs
X, X, - inputs
w - neuron weights

X4 Xz

An Artificial Neural Net



Any application that involves

Classification

Optimization

Clustering

Scheduling

Feature Extraction

may use ANN!

Most of the time integrated with other methods such as
- Expert systems

- Markov models

WHY ANN?

« Easy to implement

« Self learning ability

* When parallel architectures are used, very fast.

« Performance at least as good as other approaches, in principle
they provide nonlinear discriminants, so solve any P.R. problem.

« Many boards and software available



APPLICATION AREAS:

- Character Recognition

- Speech Recognition

- Texture Segmentation

- Biomedical Problems (Diagnosis)

- Signal and Image Processing (Compression)

- Business (Accounting, Marketing, Financial Analysis)



Background: Pioneering Work

1940 L - McCulloch-Pitts (Earliest NN models)

1950 | -

Hebb- (Learning rule, 1949)

- Rosenblatt(Perceptrons, 1958-62)

1960 1 -Widrow, Hoff (Adaline, 1960)

1970

1980 | - Hopfield, Tamk (Hopfield Model, 1985)

1990 |
90's

2000's

- RumelHart, McClelland (Backpropagation)
- Kohnen (Kohonen's nets, 1986)

- Grossberg, Carpenter (ART)

Higher order NN's, time-delay NN, recurrent NN's, radial basis function NN

-Applications in Finance, Engineering, etc.
- Well-accepted method of classification and optimization.

Becoming a bit outdated.



ANN Models:

Can be examined in

1- Single Neuron Model
2-Topology

3- Learning

1- Single Neuron Model:

f(@)
L, f(@) f(@)
X; Wi Y 1 #l e
a a o
X, N 1 J-1
linear Step(bipolar) Sigmoid

General Model:

!—*a—\

Y=/ w+w,) = f (@) = [ (net)




J(@) - Activation function
Binary threshold / Bipolar / Hardlimiter

Sigmoid  f(a)=1/(1+exp(—ad)

Whend=1, 9 _ F(=1)
da

Mc Culloch-Pitts Neuron:

- Binary Activation

- All weights of positive activations and negative activations are
the same.

Excitatory(E)

Fires only if
E>T,I=0

where

E= Zexcit.inputs

Inhibitory(I) 1= inb.inputs
T=Threshold




Higher-Order Neurons:

« The input to the threshold unit is not a linear but a
multiplicative function of weights. For example, a second-order
neuron has a threshold logic with

N
o= Zwl.xl. +w, + Zwl.jxl.xj
i=1 1<i,j<N

with binary inputs.
*  More powerful than traditional model.

2. NN Topologies:

« 2 basic types:

- Feedforward

- Recurrent - loops allowed

« Both can be "single layer” or many successive layers.



Y=output vector

[ !

T=Target output
vector

Y
X=input vector
A recurrent net
A feed-forward net



3.Learning: Means finding the weights w using the input samples so
that the input-output pairs behave as desired.

supervised- samples are labeled (of known category)

P=(X,T) input-target output pair

unsupervised- samples are not labeled. Learning in general is
attained by iteratively modifying the weights.

« Can be done in one step or a large no of steps.

Hebb's rule: If two interconnected neurons are both 'on’ at the
same time, the weight between them should be increased (by the
product of the neuron values).

 Single pass over the training data
«  w(new)=w(old)+xy

Fixed-Increment Rule (Perceptron):

- More general than Hebb's rule - iterative

- w(new)=w(old)+ oxt (change only if error occurs.)

t - target value - assumed to be '1' (if desired), 'O'(if not desired).
O is the learning rate.



Delta Rule: Used in multilayer perceptrons. Iterative. y
w(new) =w(old)+oc(t—y)x s @yg\

* where t is the target value and the y is the obtained value. ( t is
assumed to be continuous)

« Assumes that the activation function is identity.
Aw=0o(t—y)x = w(new)—w(old)

Extended Delta Rule: Modified for a differentiable activation
function.

Aw=co(t-y)xf'(a)




PATTERN RECOGNITION USING NEURAL NETS

* A neural network (connectionist system) imitate the neurons in
human brain.

e« TIn human brain there are 1013 neurons.
A neural net model

[ A P A ] outputs

w
‘ /1 Wa

[ | | ! ] inputs

« Each processing element either "fires" or it "does not fire"
* W, - weights between neurons and inputs to the neurons.



The model for each neuron:

\
\
N
N

Y= FQ ) = £ =) = £ (@)

f- activation function, normally nonlinear

Hard-limiter

+]1




Sigmoid

TOPOLOGY: How neurons are connected to each other.

* Once the topology is determined, then the weights are to be
found, using "“learning samples”. The process of finding the
weights is called the learning algorithm.

« Negative weights - inhibitory
 Positive weights - excitatory



How can a NN be used for Pattern Classification?
- Inputs are "feature vectors"”
- Each output represent one category.

- For a given input, one of the outputs "fire" (The output that
gives you the highest value). So the input sample is classified to
that category.

Many topologies used for P.R.
- Hopfield Net

- Hamming Neft

- Multilayer perceptron

- Kohonen's feature map

- Boltzman Machines



MULTILAYER PERCEPTRON
Single layer

Linear discriminants:
- Cannot solve problems with nonlinear decision boundaries

X1
8 @)
o 8
X2
*XOR problem

No linear solution exists



Multilayer Perceptron

Hidden layer 2

<——— Hidden layer 1

Fully connected multilayer perceptron

« It was shown that a MLP with 2 hidden layers can solve any
decision boundaries.



Learning in MLP:

Found in mid 80's.

Back Propagation Learning Algorithm
1- Start with arbitrary weights

2- Present the learning samples one by one to inputs of the
network.

« If the network outputs are not as desired (y=1 for the
corresponding output and O for the others)

- adjust weights starting from top level by trying to reduce
the differences

3- Propagate adjustments downwards until you reach the bottom
layer.

4- Continue repeating 2 & 3 for all samples again & again until all
samples are correctly classified.




Example:

1 for XOR
-1 for others

AND

Xl, XZ:]' or -1
Output of neurons: 1 or -1

AND GATE
Fires only when OUtput=1for X;, X5=1,-1or -11
Xy, X,=1 =-1 for other combinations




(Xl +X2)(X1X2) :(X1 +X2)(X1 "'Xz) :ZXz +X1y2
=X, XOR X,

Activation
function

i<</

¥ Take -(NOT AND)



Expressive Power of Multilayer Networks

If we assume there are 3 layers as above, (input, output, one
hidden layer).

For classification, if there are c categories, d features and m
hidden nodes. Each output is our familiar discriminant function.

Ve = & (X) :fLiwl\jf(iwjixi +Wj0j+wk0)

By allowing f to be continuous and varying, is the formula for the
discriminant function for a 3-layer (one input, one hidden, one
output) network. (m - number of nodes in the hidden layer)



« "Any continuous function can be implemented with a layer 3 -
layer network” as above, with sufficient number of hidden units.
(Kolmogorov (1957)). That means, any boundary can be
implemented.

« Then, optimum bayes rule, (g(x) - a posteriori probabilities) can

be implemented with such network!
2n+1 d

g(X)= ZIJ(ZWU-(XZ-))

In practice:

- How many nodes?

- How do we make it learn the weights with learning samples?
- Activity function?

Back-Propagation Algorithm

 Learning algorithm for multilayer feed-forward network, found
in 80's by Rumelhart et al. at MIT.




« We have a sample set (labeled).

.00 S X )

Z Z,

T _________________ T lys.ees, - Target output
ti-high, t; low fori = j
NN and X, eC,

J _________________ T Zgueeeens » Z, -actual output

1 Xd
We want:

« Find W (weight vector) so that difference between the target
output and the actual output is minimized. Criterion function

W)=t~z = | -2

is minimized for the given learning set.




The Back Propagation Algorithm works basically as follows
1- Arbitrary initial weights are assigned to all connections
2- A learning sample is presented at the input, which will cause arbitrary

outputs to be peaked. Sigmoid nonlinearities are used to find the
output of each node.

3- Topmost layer's weights are changed to force the outputs to desired

values.

4- Moving down the layers, each layers weights are updated to force the

desired outputs.

5- Iteration continues by using all the training samples many times, until a

set of weights that will result with correct outputs for all learning
samples are found. (or J (W) < @)

The weights are changed according to the following criteria:

If the node j is any node and i is one of the nodes a layer below
(connected to node j), update w;; as follows

w, (t+1)=w,(¢)+75,Xi (Generalized delta rule)

Where X; is either the output of node I or is an input and
o0,=z;,(1-z,)t,-z;)

in case | is an output node z; is the output and 1, is the desired output
at node j.



If j IS an inTermediaTe hode,

i=x(=x, )25 W

where x; is the ou’rpu’r of node .

2=z,
5%7%{]— hidden
node

gradient descent

In case of j is output z;

How do we get these updates?
Apply gradient descent algorithm to the network.

1
Jony=_|r-2|



Gradient Descent: move towards the direction of the negative of
the gradient of J(W)

oJ
AW = P 77 - learning rate

For each component w;;

oJ
Aw., =—pn——
Y 7 8wl.j

w, (1 +1) =w(t) + Aw;,
oJ

aw,.j

Now we have to evaluate
can write this as follows:

oJ oJ oa

ow, Oa, ow,

where
a,=f

for output and hidden nodes. But we




&,
— Xi
ow.,

y

But

Now call 0J s
oa, /

Then, Aw, = —775in

Now, 5]. will vary depending on j being an output node or hidden
node.

Output node use chain rule
oJ oJ Oz
Onet, 0Oz, Onet,

Derivative of the activation
function (sigmoid)

:(tj _Zj)(Zj)(l_Zj)
So, W;(t+D)=w, (&) +n(z;,(1-z,)t,—z,)X,




Hidden Node: use chain rule again
oJ

0, =

7 Onet ;

oJ _aJ 0y, Onet,

v ow;; - Oy, onet; Ow,

|

! evaluate

Now & _ 0 [IZ[tk—Zk]z}

Gyl oy, | 2

:—Z 8.] aZk :ZC: Z‘k—Zk)ﬁi

10z, OV, o oy

Oz, Onet )
=—> (t, —z k L= w,
ka o) e Z Wy

5,
w,(t+1)=w, (t)+77{z 5kwk,}xl.
k=1

So



