METU Informatics Institute Min720

Pattern Classification with Bio-Medical Applications

Part 8: Neural Networks

1- INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL

Biological Neural Networks

A Neuron:

- A nerve cell as a part of nervous system and the brain

(Figure: http://hubpages.com/hub/Self-Affirmations)

Biological Neural Networks

- There are 10 billion neurons in human brain.
- A huge number of connections
- All tasks such as thinking, reasoning, learning and recognition are performed by the information storage and transfer between neurons
- Each neuron "fires" sufficient amount of electric impulse is received from other neurons.
- The information is transferred through successive firings of many neurons through the network of neurons.

Artificial Neural Networks

An artificial NN, or ANN or (a connectionist model, a neuromorphic system) is meant to be

- A simple, computational model of the biological NN.
- A simulation of above model in solving problems in pattern recognition, optimization etc.
- A parallel architecture of simple processing elements connected densely.

An Artificial Neural Net

Any application that involves

- Classification
- Optimization
- Clustering
- Scheduling
- Feature Extraction
may use ANN!
Most of the time integrated with other methods such as
- Expert systems
- Markov models

WHY ANN?

- Easy to implement
- Self learning ability
- When parallel architectures are used, very fast.
- Performance at least as good as other approaches, in principle they provide nonlinear discriminants, so solve any P.R. problem.
- Many boards and software available

APPLICATION AREAS:

- Character Recognition
- Speech Recognition
- Texture Segmentation
- Biomedical Problems (Diagnosis)
- Signal and Image Processing (Compression)
- Business (Accounting, Marketing, Financial Analysis)

Background: Pioneering Work

ANN Models:

Can be examined in
1- Single Neuron Model
2-Topology
3-Learning

1- Single Neuron Model:

linear

Step(bipolar)

Sigmoid

General Model:

$$
Y=f\left(\sum_{i=1}^{N} w_{i} x_{i}+w_{o}\right)=f(\alpha)=f(\text { net })
$$

$f(\alpha)$ - Activation function
Binary threshold / Bipolar / Hardlimiter
Sigmoid $\quad f(\alpha)=1 /(1+\exp (-\alpha d)$
When $\mathrm{d}=1, \quad \frac{d f}{d \alpha}=f(1-f)$

Mc Culloch-Pitts Neuron:

- Binary Activation
- All weights of positive activations and negative activations are the same.

T=Threshold

Higher-Order Neurons:

- The input to the threshold unit is not a linear but a multiplicative function of weights. For example, a second-order neuron has a threshold logic with
$\alpha=\sum_{i=1}^{N} w_{i} x_{i}+w_{o}+\sum_{1 \leq i, j \leq N} w_{i j} x_{i} x_{j}$
with binary inputs.
- More powerful than traditional model.

2. NN Topologies:

- 2 basic types:
- Feedforward
- Recurrent - loops allowed
- Both can be "single layer" or many successive layers.

3. Learning: Means finding the weights w using the input samples so that the input-output pairs behave as desired.
supervised- samples are labeled (of known category)
$P=(X, T)$ input-target output pair
unsupervised- samples are not labeled. Learning in general is attained by iteratively modifying the weights.

- Can be done in one step or a large no of steps.

Hebb's rule: If two interconnected neurons are both 'on' at the same time, the weight between them should be increased (by the product of the neuron values).

- Single pass over the training data
- $w(n e w)=w(o l d)+x y$

Fixed-Increment Rule (Perceptron):

- More general than Hebb's rule - iterative
- $w($ new $)=w($ old $)+$ oxt \quad (change only if error occurs.)
t - target value - assumed to be '1' (if desired), '0'(if not desired).
σ is the learning rate.

Delta Rule: Used in multilayer perceptrons. Iterative.

$$
w(\text { new })=w(\text { old })+\sigma(t-y) x
$$

- where t is the target value and the y is the obtained value. (t is assumed to be continuous)
- Assumes that the activation function is identity.

$$
\Delta w=\sigma(t-y) x \approx w(n e w)-w(o l d)
$$

Extended Delta Rule: Modified for a differentiable activation function.

$$
\Delta w=\sigma(t-y) x f^{\prime}(\alpha)
$$

PATTERN RECOGNITION USING NEURAL NETS

- A neural network (connectionist system) imitate the neurons in human brain.
- In human brain there are 10^{13} neurons.

A neural net model

- Each processing element either "fires" or it "does not fire"
- W_{i} - weights between neurons and inputs to the neurons.

The model for each neuron:

$Y=f\left(\sum_{i=0}^{n} w_{i} x_{i}\right)=f\left(\sum_{i=1}^{n} w_{i} x_{i}-w_{0}\right)=f(\alpha)$
f-activation function, normally nonlinear

Hard-limiter

Sigmoid

Sigmoid $-f(\alpha)=\frac{1}{1+e^{-\alpha}}$

TOPOLOGY: How neurons are connected to each other.

- Once the topology is determined, then the weights are to be found, using "learning samples". The process of finding the weights is called the learning algorithm.
- Negative weights - inhibitory
- Positive weights - excitatory

How can a NN be used for Pattern Classification?

- Inputs are "feature vectors"
- Each output represent one category.
- For a given input, one of the outputs "fire" (The output that gives you the highest value). So the input sample is classified to that category.

Many topologies used for P.R.

- Hopfield Net
- Hamming Net
- Multilayer perceptron
- Kohonen's feature map
- Boltzman Machines

MULTILAYER PERCEPTRON

Single layer

Linear discriminants:

- Cannot solve problems with nonlinear decision boundaries

-XOR problem
No linear solution exists

Multilayer Perceptron

Fully connected multilayer perceptron

- It was shown that a MLP with 2 hidden layers can solve any decision boundaries.

Learning in MLP:
Found in mid 80's.

Back Propagation Learning Algorithm

1- Start with arbitrary weights
2- Present the learning samples one by one to inputs of the network.

- If the network outputs are not as desired ($y=1$ for the corresponding output and 0 for the others)
- adjust weights starting from top level by trying to reduce the differences
3- Propagate adjustments downwards until you reach the bottom layer.
4- Continue repeating $2 \& 3$ for all samples again \& again until all samples are correctly classified.

Example:

$$
\begin{aligned}
\left(X_{1}+X_{2}\right)\left(\overline{X_{1} X_{2}}\right)=\left(X_{1}+X_{2}\right)\left(\overline{X_{1}}+\overline{X_{2}}\right) & =\overline{X_{1}} X_{2}+X_{1} \overline{X_{2}} \\
& =X_{1} \quad \text { XOR } \quad X_{2}
\end{aligned}
$$

Activation function

Expressive Power of Multilayer Networks

- If we assume there are 3 layers as above, (input, output, one hidden layer).
- For classification, if there are c categories, d features and m hidden nodes. Each output is our familiar discriminant function.

- By allowing f to be continuous and varying, is the formula for the discriminant function for a 3-layer (one input, one hidden, one output) network. (m - number of nodes in the hidden layer)
- "Any continuous function can be implemented with a layer 3layer network" as above, with sufficient number of hidden units. (Kolmogorov (1957)). That means, any boundary can be implemented.
- Then, optimum bayes rule, $(g(x)$ - a posteriori probabilities) can be implemented with such network!

$$
g(X)=\sum_{j=1}^{2 n+1} I_{j}\left(\sum_{i=1}^{d} w_{i j}\left(x_{i}\right)\right)
$$

In practice:

- How many nodes?
- How do we make it learn the weights with learning samples?
- Activity function?

Back-Propagation Algorithm

- Learning algorithm for multilayer feed-forward network, found in 80's by Rumelhart et al. at MIT.
- We have a sample set (labeled). $\left\{X_{1}, X_{2}, \ldots \ldots \ldots \ldots, X_{n}\right\}$

$$
\begin{aligned}
& t_{1}, \ldots ., t_{c} \text { - Target output } \\
& \mathrm{t}_{\mathrm{i}} \text {-high, } \mathrm{t}_{\mathrm{j}} \text { low for } i \neq j \\
& \text { and } \quad X_{k} \in C_{i} \\
& z_{1}, \ldots \ldots, z_{c} \quad \text {-actual output }
\end{aligned}
$$

We want:

- Find W (weight vector) so that difference between the target output and the actual output is minimized. Criterion function

$$
J(W)=\frac{1}{2} \sum\left(t_{k}-z_{k}\right)^{2}=\frac{1}{2}\|T-Z\|^{2}
$$

is minimized for the given learning set.

The Back Propagation Algorithm works basically as follows
1- Arbitrary initial weights are assigned to all connections
2- A learning sample is presented at the input, which will cause arbitrary outputs to be peaked. Sigmoid nonlinearities are used to find the output of each node.
3- Topmost layer's weights are changed to force the outputs to desired values.
4- Moving down the layers, each layers weights are updated to force the desired outputs.
5- Iteration continues by using all the training samples many times, until a set of weights that will result with correct outputs for all learning samples are found. (or $J(W)<\theta$)
The weights are changed according to the following criteria:

- If the node j is any node and i is one of the nodes a layer below (connected to node j), update $w_{i j}$ as follows $w_{i j}(t+1)=w_{i j}(t)+\eta \delta_{j} X i \quad$ (Generalized delta rule)
- Where X_{j} is either the output of node I or is an input and

$$
\delta_{j}=z_{j}\left(1-z_{j}\right)\left(t_{j}-z_{j}\right)
$$

- in case j is an output node z_{j} is the output and t_{j} is the desired output at node j.

If j is an intermediate node,
$\delta_{j}=x_{j}\left(1-x_{j}\right) \sum_{k=1}^{m} \delta_{k} w_{j k}$
where x_{j} is the output of node j.

In case of j is output z_{j}

How do we get these updates?
Apply gradient descent algorithm to the network.

$$
J(W)=\frac{1}{2}\|T-Z\|^{2}
$$

Gradient Descent: move towards the direction of the negative of the gradient of $J(W)$

$$
\Delta W=-\eta \frac{\partial J}{\partial W} \quad \eta \text { - learning rate }
$$

For each component $w_{i j}$

$$
\begin{aligned}
& \Delta w_{i j}=-\eta \frac{\partial J}{\partial w_{i j}} \\
& w_{i j}(t+1)=w(t)+\Delta w_{i j}
\end{aligned}
$$

Now we have to evaluate $\frac{\partial J}{\partial w_{j}}$ for output and hidden nodes. But we can write this as follows:

$$
\frac{\partial J}{\partial w_{i j}}=\frac{\partial J}{\partial \alpha_{j}} \frac{\partial \alpha_{j}}{\partial w_{i j}}
$$

where

$$
\alpha_{j}=f\left(\sum_{i=1}^{k} w_{i j} X_{i}\right)
$$

But $\frac{\partial \alpha_{j}}{\partial w_{i j}}=X_{i}$
Now call $\frac{\partial J}{\partial \alpha_{j}}=\delta_{j}$
Then, $\quad \Delta w_{i j}=-\eta \delta_{j} X_{i}$

Now, δ_{j} will vary depending on j being an output node or hidden node.
Output node use chain rule

$$
\begin{aligned}
& \frac{\partial J}{\partial n e t_{j}}=\frac{\partial J}{\partial z_{j}} \underbrace{\frac{\partial z_{j}}{\partial \text { fer }_{j}}}_{\begin{array}{l}
\text { Derivative of the activation } \\
\text { function (sigmoid) }
\end{array}} \\
& \quad=\left(t_{j}-z_{j}\right)\left(z_{j}\right)\left(1-z_{j}\right)
\end{aligned}
$$

So, $w_{i j}(t+1)=w_{i j}(t)+\eta\left(z_{j}\right)\left(1-z_{j}\right)\left(t_{j}-z_{j}\right) X_{i}$

Hidden Node: use chain rule again

$$
\delta_{j}=\frac{\partial J}{\partial n e t_{j}}
$$

Now

So

$$
\begin{aligned}
& \frac{\partial J}{\partial y_{i}}=\frac{\partial}{\partial y_{i}}\left[\frac{1}{2} \sum\left[t_{k}-z_{k}\right]^{2}\right] \\
& =\frac{1}{2} \sum_{k=1}^{c} \frac{\partial J}{\partial z_{k}} \frac{\partial z_{k}}{\partial y_{j}}=\sum_{k=1}^{c}\left(t_{k}-z_{k}\right) \frac{\partial z_{k}}{\partial y_{j}} \\
& =-\sum\left(t_{k}-z_{k}\right) \frac{\partial z_{k}}{\partial n e t_{k}} \frac{\partial n e t_{k}}{\partial y_{j}}=-\sum_{k=1}^{c} \delta_{k} w_{k j} \\
& \delta_{k}^{\prime} \\
& w_{i j}(t+1)=w_{i j}(t)+\eta\left[\sum_{k=1}^{c} \delta_{k} w_{k i}\right] X_{i}
\end{aligned}
$$

