
METU Informatics Institute

Min720

Pattern Classification with Bio-Medical

Applications

Part 8: Neural Networks

1- INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL

Biological Neural Networks

A Neuron:

- A nerve cell as a part of nervous system and the brain

(Figure: http://hubpages.com/hub/Self-Affirmations)

Biological Neural Networks

- There are 10 billion neurons in human brain.

- A huge number of connections

- All tasks such as thinking, reasoning, learning and recognition are
performed by the information storage and transfer between
neurons

- Each neuron “fires” sufficient amount of electric impulse is
received from other neurons.

- The information is transferred through successive firings of
many neurons through the network of neurons.

Artificial Neural Networks

An artificial NN, or ANN or (a connectionist model, a neuromorphic
system) is meant to be

- A simple, computational model of the biological NN.

- A simulation of above model in solving problems in pattern
recognition, optimization etc.

- A parallel architecture of simple processing elements connected
densely.

An Artificial Neural Net

w
w w w

Y2

Y1

X2X1

Y1, Y2 – outputs
X1, X2 – inputs
w – neuron weights

a neuron

Any application that involves

- Classification

- Optimization

- Clustering

- Scheduling

- Feature Extraction

may use ANN!

Most of the time integrated with other methods such as

- Expert systems

- Markov models

WHY ANN?

• Easy to implement

• Self learning ability

• When parallel architectures are used, very fast.

• Performance at least as good as other approaches, in principle
they provide nonlinear discriminants, so solve any P.R. problem.

• Many boards and software available

APPLICATION AREAS:

- Character Recognition

- Speech Recognition

- Texture Segmentation

- Biomedical Problems (Diagnosis)

- Signal and Image Processing (Compression)

- Business (Accounting, Marketing, Financial Analysis)

Background: Pioneering Work

1940 - McCulloch-Pitts (Earliest NN models)

1990 - Grossberg, Carpenter (ART)

90’s Higher order NN’s, time-delay NN, recurrent NN‘s, radial basis function NN
-Applications in Finance, Engineering, etc.
- Well-accepted method of classification and optimization.

1950 - Hebb- (Learning rule, 1949)
- Rosenblatt(Perceptrons, 1958-62)

1980 - Hopfield, Tamk (Hopfield Model, 1985)
- RumelHart, McClelland (Backpropagation)
- Kohnen (Kohonen’s nets, 1986)

1960 -Widrow, Hoff (Adaline, 1960)

1970

2000’s Becoming a bit outdated.

ANN Models:

Can be examined in

1- Single Neuron Model

2-Topology

3- Learning

1- Single Neuron Model:

General Model:

1

X1

XN

wN

w1

w0

Y

α

)(αf
)(αf)(αf

α α

+1
+1

-1 -1

linear Step(bipolar) Sigmoid

∑
=

==+=
N

i

oii netffwxwfY
1

)()()(α

α

- Activation function

Binary threshold / Bipolar / Hardlimiter

Sigmoid

When d=1,

Mc Culloch-Pitts Neuron:

- Binary Activation

- All weights of positive activations and negative activations are
the same.

)(αf

)exp(1/(1)(df αα −+=

)1(ff
d

df
−=

α

1

1

1

1

Excitatory(E)

Inhibitory(I)

Fires only if

where

T=Threshold

0, =≥ ITE

∑= inputsexcitE .

∑= inputsinbI .

Higher-Order Neurons:

• The input to the threshold unit is not a linear but a
multiplicative function of weights. For example, a second-order
neuron has a threshold logic with

with binary inputs.

• More powerful than traditional model.

2. NN Topologies:

• 2 basic types:

- Feedforward

- Recurrent – loops allowed

• Both can be “single layer” or many successive layers.

∑ ∑
= ≤≤

++=
N

i Nji

jiijoii xxwwxw
1 ,1

α

Y=output vector

X=input vector

T=Target output
vector

A feed-forward net
A recurrent net

3.Learning: Means finding the weights w using the input samples so
that the input-output pairs behave as desired.

supervised- samples are labeled (of known category)

P=(X,T) input-target output pair

unsupervised- samples are not labeled. Learning in general is
attained by iteratively modifying the weights.

• Can be done in one step or a large no of steps.

Hebb’s rule: If two interconnected neurons are both ‘on’ at the
same time, the weight between them should be increased (by the
product of the neuron values).

• Single pass over the training data

• w(new)=w(old)+xy

Fixed-Increment Rule (Perceptron):

- More general than Hebb’s rule – iterative

- (change only if error occurs.)

t – target value – assumed to be ‘1’ (if desired), ‘0’(if not desired).

is the learning rate.

xtoldwneww σ+=)()(

σ

Delta Rule: Used in multilayer perceptrons. Iterative.

• where t is the target value and the y is the obtained value. (t is
assumed to be continuous)

• Assumes that the activation function is identity.

Extended Delta Rule: Modified for a differentiable activation
function.

xytoldwneww)()()(−+= σ

)()()(oldwnewwxytw −≈−=∆ σ

Y

w

X

)(')(ασ xfytw −=∆

PATTERN RECOGNITION USING NEURAL NETS

• A neural network (connectionist system) imitate the neurons in
human brain.

• In human brain there are 1013 neurons.

A neural net model

• Each processing element either “fires” or it “does not fire”

• Wi – weights between neurons and inputs to the neurons.

w1 w2

w3

outputs

inputs

The model for each neuron:

f- activation function, normally nonlinear

Hard-limiter

X2

X1

Xn

Y

1

w1

w0

wn

)()()(
0 1

0 αfwxwfxwfY
n

i

n

i

iiii =−== ∑ ∑
= =

+1

-1

α

Sigmoid

Sigmoid –

TOPOLOGY: How neurons are connected to each other.

• Once the topology is determined, then the weights are to be
found, using “learning samples”. The process of finding the
weights is called the learning algorithm.

• Negative weights – inhibitory

• Positive weights - excitatory

α

+1

-1

αα −+
=

e
f

1

1
)(

How can a NN be used for Pattern Classification?

- Inputs are “feature vectors”

- Each output represent one category.

- For a given input, one of the outputs “fire” (The output that
gives you the highest value). So the input sample is classified to
that category.

Many topologies used for P.R.

- Hopfield Net

- Hamming Net

- Multilayer perceptron

- Kohonen’s feature map

- Boltzman Machines

MULTILAYER PERCEPTRON

Single layer

Linear discriminants:

- Cannot solve problems with nonlinear decision boundaries

y1...ym

x1...xn

•XOR problem
No linear solution exists

x2

x1

Multilayer Perceptron

Fully connected multilayer perceptron

• It was shown that a MLP with 2 hidden layers can solve any
decision boundaries.

x1...xn

y1.........ym

Hidden layer 2

Hidden layer 1

Learning in MLP:

Found in mid 80’s.

Back Propagation Learning Algorithm

1- Start with arbitrary weights

2- Present the learning samples one by one to inputs of the
network.

• If the network outputs are not as desired (y=1 for the
corresponding output and 0 for the others)

- adjust weights starting from top level by trying to reduce
the differences

3- Propagate adjustments downwards until you reach the bottom
layer.

4- Continue repeating 2 & 3 for all samples again & again until all
samples are correctly classified.

Example:

AND 1 for XOR
-1 for others

NOT AND
X1, X2=1 or -1
Output of neurons: 1 or -1

Output=1 for X1, X2=1,-1 or -1,1
=-1 for other combinations

OR GATE AND GATE
Fires only when
X1, X2=1

.5

-1 .7 -.4

-1.5

1
1

1

1

1

X1 X2

212121212121))(())((XXXXXXXXXXXX +=++=+

21 XXORX=

+1

-1

Activation
function

-1

.7
.4

Take –(NOT AND)

Expressive Power of Multilayer Networks

• If we assume there are 3 layers as above, (input, output, one
hidden layer).

• For classification, if there are c categories, d features and m
hidden nodes. Each output is our familiar discriminant function.

• By allowing f to be continuous and varying, is the formula for the
discriminant function for a 3-layer (one input, one hidden, one
output) network. (m – number of nodes in the hidden layer)

y1 y2 yc

wkj









+








+== ∑ ∑

= =

m

j

k

d

i

jijikjkk wwxwfwfXgy
1

0

1

0)(

• “Any continuous function can be implemented with a layer 3 –
layer network” as above, with sufficient number of hidden units.
(Kolmogorov (1957)). That means, any boundary can be
implemented.

• Then, optimum bayes rule, (g(x) – a posteriori probabilities) can
be implemented with such network!

In practice:

- How many nodes?

- How do we make it learn the weights with learning samples?

- Activity function?

Back-Propagation Algorithm

• Learning algorithm for multilayer feed-forward network, found
in 80’s by Rumelhart et al. at MIT.

∑ ∑
+

= =

=
12

1 1

))(()(
n

j

d

i

iijj xwIXg

• We have a sample set (labeled).

We want:

• Find W (weight vector) so that difference between the target
output and the actual output is minimized. Criterion function

is minimized for the given learning set.

}...,,.........,{ 21 nXXX

NN

z1 zc

x1 xd

ctt ,.....,1 - Target output

ti-high, tj low for ji ≠

ik CXand ∈

czz ,......,1 -actual output

∑ −=−=
22

2

1
)(

2

1
)(ZTztWJ kk

The Back Propagation Algorithm works basically as follows

1- Arbitrary initial weights are assigned to all connections

2- A learning sample is presented at the input, which will cause arbitrary
outputs to be peaked. Sigmoid nonlinearities are used to find the
output of each node.

3- Topmost layer’s weights are changed to force the outputs to desired
values.

4- Moving down the layers, each layers weights are updated to force the
desired outputs.

5- Iteration continues by using all the training samples many times, until a
set of weights that will result with correct outputs for all learning
samples are found. (or)

The weights are changed according to the following criteria:

• If the node j is any node and i is one of the nodes a layer below
(connected to node j), update wij as follows

(Generalized delta rule)

• Where Xj is either the output of node I or is an input and

• in case j is an output node zj is the output and tj is the desired output
at node j.

θ<)(WJ

Xitwtw jijij ηδ+=+)()1(

))(1(jjjjj ztzz −−=δ

If j is an intermediate node,

where xj is the output of node j.

How do we get these updates?

Apply gradient descent algorithm to the network.

∑
=

−=
m

k

jkkjjj wxx
1

)1(δδ

wij

xi

z=zj

In case of j is output zj

kδ j- hidden
node

gradient descent

2

2

1
)(ZTWJ −=

Gradient Descent: move towards the direction of the negative of
the gradient of J(W)

- learning rate

For each component wij

Now we have to evaluate for output and hidden nodes. But we

can write this as follows:

where

W

J
W

∂
∂

−=∆ η η

ij

ij
w

J
w

∂
∂

−=∆ η

ijij wtwtw ∆+=+)()1(

ijw

J

∂
∂

ij

j

jij w

J

w

J

∂

∂

∂
∂

=
∂
∂ α

α









= ∑

=

k

i

iijj Xwf
1

α

But

Now call

Then,

Now, will vary depending on j being an output node or hidden
node.

Output node use chain rule

So,

i

ij

j
X

w
=

∂

∂α

j

j

J
δ

α
=

∂
∂

ijij Xw ηδ−=∆

jδ

j

j

jj net

z

z

J

net

J

∂

∂

∂
∂

=
∂
∂

Derivative of the activation
function (sigmoid)

)1)()((jjjj zzzt −−=

ijjjjijij Xztzztwtw))(1)(()()1(−−+=+ η

Hidden Node: use chain rule again

Now

So

j

j
net

J

∂
∂

=δ

ij

j

j

j

jij

ij
w

net

net

y

y

J

w

J
w

∂

∂

∂

∂

∂
∂

=
∂
∂

=∆

i

j
ijw

jkk w,δ

evaluate

[] 




 −
∂
∂

=
∂
∂

∑ 2

2

1
kk

ii

zt
yy

J

()∑ ∑
= = ∂

∂
−=

∂
∂

∂
∂

=
c

k

c

k j

k
kk

j

k

k y

z
zt

y

z

z

J

1 12

1

∑ ∑
=

−=
∂

∂
∂
∂

−−=
c

k

kjk

j

k

k

k
kk w

y

net

net

z
zt

1

)(δ

kδ

i

c

k

kikijij Xwtwtw 







+=+ ∑

=1

)()1(δη

