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1- INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL

Biological Neural Networks

A Neuron:

- A nerve cell as a part of nervous system and the brain

(Figure: http://hubpages.com/hub/Self-Affirmations)



Biological Neural Networks

- There are 10 billion neurons in human brain.

- A huge number of connections

- All tasks such as thinking, reasoning, learning and recognition are 
performed by the information storage and transfer between 
neurons

- Each neuron “fires” sufficient amount of electric impulse is 
received from other neurons.

- The information is transferred through successive firings of 
many neurons through the network of neurons.



Artificial Neural Networks

An artificial NN, or ANN or (a connectionist model, a neuromorphic
system) is meant to be 

- A simple, computational model of the biological NN.

- A simulation of above model in solving problems in pattern 
recognition, optimization etc.

- A parallel architecture of simple processing elements connected 
densely.



An Artificial Neural Net
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w – neuron weights
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Any application that involves

- Classification

- Optimization

- Clustering

- Scheduling

- Feature Extraction

may use ANN!

Most of the time integrated with other methods such as 

- Expert systems

- Markov models

WHY ANN?

• Easy to implement

• Self learning ability

• When parallel architectures are used, very fast.

• Performance at least as good as other approaches, in principle 
they provide nonlinear discriminants, so solve any P.R. problem.

• Many boards and software available



APPLICATION AREAS:

- Character Recognition

- Speech Recognition

- Texture Segmentation

- Biomedical Problems (Diagnosis)

- Signal and Image Processing (Compression)

- Business (Accounting, Marketing, Financial Analysis)



Background: Pioneering Work

1940     - McCulloch-Pitts (Earliest NN models) 

1990     - Grossberg, Carpenter (ART)

90’s        Higher order NN’s, time-delay NN, recurrent NN‘s, radial basis function NN
-Applications in Finance, Engineering, etc.
- Well-accepted method of classification and optimization.

1950     - Hebb- (Learning rule, 1949)
- Rosenblatt(Perceptrons, 1958-62) 

1980     - Hopfield, Tamk (Hopfield Model, 1985)
- RumelHart, McClelland (Backpropagation)
- Kohnen (Kohonen’s nets, 1986)

1960     -Widrow, Hoff (Adaline, 1960) 

1970      

2000’s       Becoming a bit outdated.



ANN Models:

Can be examined in 

1- Single Neuron Model

2-Topology

3- Learning

1- Single Neuron Model:

General Model:
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- Activation function

Binary threshold / Bipolar / Hardlimiter

Sigmoid  

When d=1,

Mc Culloch-Pitts Neuron:

- Binary Activation

- All weights of positive activations and negative activations are 
the same.         
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Higher-Order Neurons:

• The input to the threshold unit is not a linear but a 
multiplicative function of weights. For example, a second-order 
neuron has a threshold logic with

with binary inputs.

• More powerful than traditional model.

2. NN Topologies:

• 2 basic types:

- Feedforward

- Recurrent – loops allowed

• Both can be “single layer” or many successive layers.
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Y=output vector

X=input vector

T=Target output 
vector

A feed-forward net
A recurrent net



3.Learning: Means finding the weights w using the input samples so 
that the input-output pairs behave as desired.

supervised- samples are labeled (of known category)

P=(X,T) input-target output pair

unsupervised- samples are not labeled. Learning in general is 
attained by iteratively modifying the weights.

• Can be done in one step or a large no of steps.

Hebb’s rule: If two interconnected neurons are both ‘on’ at the 
same time, the weight between them should be increased (by the 
product of the neuron values). 

• Single pass over the training data

• w(new)=w(old)+xy

Fixed-Increment Rule (Perceptron):

- More general than Hebb’s rule – iterative

- (change only if error occurs.)

t – target value – assumed to be ‘1’ (if desired), ‘0’(if not desired).

is the learning rate.
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Delta Rule: Used in multilayer perceptrons. Iterative.

• where t is the target value and the y is the obtained value. ( t is 
assumed to be continuous)

• Assumes that the activation function is identity. 

Extended Delta Rule: Modified for a differentiable activation 
function.
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PATTERN RECOGNITION USING NEURAL NETS

• A neural network (connectionist system) imitate the neurons in 
human brain.

• In human brain there are 1013 neurons.

A neural net model

• Each processing element either “fires” or it “does not fire”

• Wi – weights between neurons and inputs to the neurons.

w1 w2

w3

outputs

inputs



The model for each neuron:

f- activation function, normally nonlinear

Hard-limiter

X2

X1

Xn

Y

1

w1

w0

wn

)()()(
0 1

0 αfwxwfxwfY
n

i

n

i

iiii =−== ∑ ∑
= =

+1

-1

α



Sigmoid

Sigmoid –

TOPOLOGY: How neurons are connected to each other.

• Once the topology is determined, then the weights are to be 
found, using “learning samples”. The process of finding the 
weights is called the learning algorithm.

• Negative weights – inhibitory

• Positive weights - excitatory 
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How can a NN be used for Pattern Classification?

- Inputs are “feature vectors”

- Each output represent one category.

- For a given input, one of the outputs “fire” (The output that 
gives you the highest value). So the input sample is classified to 
that category.

Many topologies used for P.R.

- Hopfield Net

- Hamming Net

- Multilayer perceptron

- Kohonen’s feature map

- Boltzman Machines



MULTILAYER PERCEPTRON

Single layer

Linear discriminants: 

- Cannot solve problems with nonlinear decision boundaries 

y1.........................................ym

x1.........................................xn

•XOR problem
No linear solution exists

x2

x1



Multilayer Perceptron

Fully connected multilayer perceptron

• It was shown that a MLP with 2 hidden layers can solve any 
decision boundaries.

x1.........................................xn

y1.........ym

Hidden layer 2

Hidden layer 1



Learning in MLP:

Found in mid 80’s.

Back Propagation Learning Algorithm

1- Start with arbitrary weights

2- Present the learning samples one by one to inputs of the 
network.

• If the network outputs are not as desired (y=1 for the 
corresponding output and 0 for the others)

- adjust weights starting from top level by trying to reduce 
the differences

3- Propagate adjustments downwards until you reach the bottom 
layer.

4- Continue repeating 2 & 3 for all samples again & again until all 
samples are correctly classified.



Example:

AND 1 for XOR
-1 for others

NOT AND
X1, X2=1 or -1
Output of neurons: 1 or -1

Output=1 for X1, X2=1,-1 or -1,1
=-1 for other combinations 

OR GATE AND GATE
Fires only when 
X1, X2=1
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Expressive Power of Multilayer Networks

• If we assume there are 3 layers as above, (input, output, one 
hidden layer).

• For classification, if there are c categories, d features and m 
hidden nodes. Each output is our familiar discriminant function.

• By allowing f to be continuous and varying, is the formula for the 
discriminant function for a 3-layer (one input, one hidden, one 
output) network. (m – number of nodes in the hidden layer)
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• “Any continuous function can be implemented with a layer 3 –
layer network” as above, with sufficient number of hidden units. 
(Kolmogorov (1957)). That means, any boundary can be 
implemented.

• Then, optimum bayes rule, (g(x) – a posteriori probabilities) can 
be implemented with such network!

In practice:

- How many nodes?

- How do we make it learn the weights with learning samples?

- Activity function?

Back-Propagation Algorithm

• Learning algorithm for multilayer feed-forward network, found 
in 80’s by Rumelhart et al. at MIT.
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• We have a sample set (labeled).

We want:

• Find W (weight vector) so that difference between the target 
output and the actual output is minimized. Criterion function

is minimized for the given learning set.
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The Back Propagation Algorithm works basically as follows

1- Arbitrary initial weights are assigned to all connections

2- A learning sample is presented at the input, which will cause arbitrary 
outputs to be peaked. Sigmoid nonlinearities are used to find the 
output of each node.

3- Topmost layer’s weights are changed to force the outputs to desired 
values.

4- Moving down the layers, each layers weights are updated to force the 
desired outputs.

5- Iteration continues by using all the training samples many times, until a 
set of weights that will result with correct outputs for all learning 
samples are found. (or                 )

The weights are changed according to the following criteria:

• If the node j is any node and i is one of the nodes a layer below 
(connected to node j), update wij as follows

(Generalized delta rule)

• Where Xj is either the output of node I or is an input and 

• in case j is an output node zj is the output and tj is the desired output 
at node j.
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If j is an intermediate node,

where xj is the output of node j.

How do we get these updates?

Apply gradient descent algorithm to the network.
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Gradient Descent: move towards the direction of the negative of 
the gradient of J(W)

- learning rate

For each component wij

Now we have to evaluate         for output and hidden nodes. But we 

can write this as follows:

where 
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But

Now call

Then,   

Now,       will vary depending on j being an output node or hidden 
node.

Output node use chain rule

So, 
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Hidden Node: use chain rule again

Now 

So 
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