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Back Propagation as Feature Mapping

• Consider hidden-to-output layer

• Has capability of separation for a linearly separable problem.

• That means, the hidden node outputs should lie in a linearly 
separable space.

• Consider the x-or problem again. See how the y1,y2 outputs 
change while learning is taking place.

• We can see from figure that the iterations move y’s towards a 
linearly separable position (next page).

• Another example: (next next page) shows the importance of the 
number of hidden nodes.







Learned weights – what do they mean?

Input to hidden weights

� Such weights at a single unit describe the input pattern that 
leads to a maximum activation.

� Finds feature groupings

� Example : next page(Fig. 6.13 in DHS)

� Input to hidden weights for a 2-hidden nodes topology shows 
the features emphasized for each node.





General rules to follow when implementing MLP and  Back Propagation 

Algorithm (Practical Implications)

• Activation Function – works with any continuous function with 
derivative f’ = f(1-f)

• Gaussian activation functions are also used, especially if it is 
guessed that the data is generated by gaussian distributions.



Proper Activation Functions:
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Scaling inputs

• If the input features have different units, then they should be 
normalized to have zero mean and standard deviation=1.
Otherwise, the network will train with higher values. Same is 
true even with same unit but different sizes.

Target Values

Given Odd Function as sigmoid

• Should the target values be selected as d?

• No, since it’s never reached, the algorithm will not terminate.

• Use +1, -1 instead. 
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Number of Hidden Units(nH)

• Complicated boundaries require higher nH
• Nearly linear boundaries require small no. of nH
• But if you don’t have enough samples, no. use of using high nH
• Rule of thumb: nH= n/10 where n- total no. of training samples

Initializing Weights

• Starting with zero weights cause “no learning” since

- All zero weights lead to all-zero outputs

- Updating weights at hidden nodes cause no change; remember 
the formula

• Uniform learning: all weights reach their fixed values at the 
same time. We want fast and uniform learning.

• Rule of thumb: Choose weights randomly from a uniform 
distribution
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• Rule of thumb for initializing hidden to  output weights:

• Rule of thumb for initializing input to hidden weights:

• Calculated output to be in correct range in sigmoid.
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Learning Curves

J/n= average error per pattern plotted against number of epochs 

(iterations) in the backprop algorithm

Learning set:  samples used in training

Test set:  measures the performance 

Validation set:  used to decide when to stop



Validation and Cross-validation in training

• In general, the labeled data is randomly divided into two : 
learning and validation sets (they should not overlap)

• The training should stop when validation set passes a minimum

• M-fold cross-validation: The training set is divided into m 
randomly selected disjoint sets of almost equal size

• System is trained m times, each time one of these being used as 
validation set

• Overall performance is measured as the average of m errors 
found.

• Approach can be used at different places: for example, optimal 
k in k-nn can be found using cross validation.
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UNSUPERVISED LEARNING AND CLUSTERING

No class labels for learning samples.

We need additional means to label and classify – can be done 
separately (first label then classify) or together.

PARAMETRIC APPROACH- Estimation of class conditional densities

NONPARAMETRIC – CLUSTERING

Problem:
Given samples X1, X2,…………, Xn

Group them into clusters so that 
samples in same cluster are 
“similar” 

Easy separation
example



Difficult separation





Similarity Measures

We would like to group the learning samples so that the samples 
that fall in the same cluster are “similar” and others are “non-
similar”.

- small if               belong to same cluster.

- large if               are at different clusters. 

Euclidian Distance is such a measure.

Mahalanobis, cosine distances

Cosine distance: angle wrt origin

Non-metric :  
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Cosine distance – measures the angle between two vectors X and X’

When the features are binary, assume xi, xj binary vectors

- number of ‘1’ ‘s shared

/ tanimoto distance

Number of shared features (being 1),

normalized with number of features that are 1 in xi and xj.

Used in information retrival.
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Scaling Effects



Scaling Effects



Criterion Functions for Clustering

c- number of clusters

Mi – mean of the samples in the same cluster

Aim: determine the partition that will minimize J.

� Minimum variance partition ( sum of squared error criterion)

Sum of squared error criterion

Sum of squared errors:

Using Je results well for compact clusters.
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Basic ISODATA Algorithm (k-means)

Assume that there are k categories

1. Choose k arbitrary points in space as cluster centers. 

2. Assign samples to their nearest cluster. 

3. Update M’s. If any means changed value, go to 2. Otherwise 
stop. 

May fall into local minimum.
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Versions:

If the number of clusters is not specified, a criterion 
(threshold) for eliminating some clusters are used, such as:

If              eliminate cluster i and merge it with another

• Distances between cluster centers may be computed to 
determine how to merge..

Iterative Optimization

Trying all combinations to find minimum Je – Exhaustive search

is expensive

Iteratively – remove samples from one cluster to the other until a 
minima is obtained.

1. Arbitrarily select an initial grouping into a clusters. Find sample 
means

θ>Ji
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2. Select an arbitrary point and move it to another cluster if that 
change reduces Je.

3. Iterate until no change in Je occurs.

For the sample X* to be removed from ci and go to cj, the mean mj

changes as follows:

Similarly
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Here, J’s can be updated accordingly

Iterative Optimization Cont.

Step 1: Start with arbitrary clusters.

Step 2: Move a sample from one cluster to another one with 
minimizing S.

sample variance

Sample X goes from cluster i to j if:
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For many clusters, step 2:

Find

Transfer X to Ck if              for all j.

This turns out to be:

Measure the normalized distances to other sample means. Assign it 
to the cluster with shortest distance.

When ni, nj large, converts into so called “k-means” or “ISODATA” 
algorithm where sample counts are not taken into account.
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Hierarchical Clustering

A different approach to clustering.

Hierarchy in living species

• Each species is a class by itself.

• Combine the ones that are closest

• Continue combining until the number of clusters are what is 
desired or a criterion is satisfied.

1-d problem

Issues:

• How do we measure distance between clusters?

• When do we stop?

• Do we start from bottom or from top?
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Basic Bottom-up Hierarchical Clustering Algorithm

1. Start taking each sample as a cluster. n=m (n of samples)

2. Measure di,j – distance between clusters Di and Dj. Join two 
clusters Di and Dk for which 

n=n-1;

3. If n<k   stop.            k:number of desired clusters

Else go to 2.     

dij can be defined in many ways.

where s is in i and z is in j.
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Example

Apply hierarchical clustering with dmin to below data where c=3.

Nearest neighbor clustering

dmin

dmax

will form elongated clusters!



Computational Complexity of Hierarchical Clustering

Assume 

n – samples

d – dimension

c – clusters to be formed.

Use  

- To find the nearest clusters at level     ,

- for each pair

- n(n-1) pairwise calculations,              (each sample with all others 
except itself)

- Finding the minimum distance pair

overall
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NN clustering algorithm and minimal spanning trees

If we continue with NN to end up with a single cluster, we obtain 
“minimal spanning tree”.

Spanning tree: a graph with no loops that will contain a path 
between any two points.

Minimal spanning tree: a spanning tree with a minimum total length 
(length : sum of path lengths)

Top-down Clustering: Graph theoretical approach so a top-down 
approach will

• Obtain the minimal spanning tree using a fast algorithm

• Remove the longest edge

• Continue removing until desired number of clusters are reached. 



Solution with iterative clustering algorithm

Step 2 of Bottom-up hierarchical clustering algorithm:

Join clusters i and j if that will result with smallest increase in

This is the same as joining clusters with closest means, normalized 
with the number of samples in each cluster.

One way to use above algorithm is: to obtain an initial partitioning 
for iterative optimization.
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