METU Informatics Institute
Min720

Pattern Classification with Bio-Medical
Applications

Part 10: Neural Networks-2
Clustering



Back Propagation as Feature Mapping

 Consider hidden-to-output layer
* Has capability of separation for a linearly separable problem.

« That means, the hidden node outputs should lie in a linearly
separable space.

 Consider the x-or problem again. See how the y,y, outputs
change while learning is taking place.

* We can see from figure that the iterations move y's towards a
linearly separable position (next page).

« Another example: (next next page) shows the importance of the
number of hidden nodes.



input
representation

hidden -
representation

v T

y:

1.5 {

— —

.

error on
individual patterns

¥:

FIGURE 6.10. A 2-2-1 backpropagation network with bias and the four patterns of the
XOR problem are shown at the top. The middle figure shows the outputs of the hidden
units for each of the four patterns; these outputs mqye across the y, y;-space as the net
work learns. In this space, early in training (e OJ 4) the two categories are not linearly
separable. As the input-to-hidden weights learn as marked by the number of epochs, the
categories become linearly separable. The dashed line is the linear decision boundary
determined by the hidden-to-output weights at the end of learning; indeed the patters
of the two classes are separated by this boundary. The bottom graph shows the lea-
ing curves—the error on individual patterns and the total error as a function of epoch.
Note that, as frequently happens, the total training error decreases monotomcally, even
though this is not the case for the error on each individual pattern.




patrerns partterns

not separated separated
Y2
& P
-1
-«
L] -
-
e
-
-~
-I -~ Fi b ]

2-2-1
X2
54
0 . nput 2 3
18 o
2 P PN
I ®
‘ 7 Z 7 4 T

FIGURE 6.12. Seven patterns from a two-dimensional two-category nonlinearly sepa-
rable classification praoblem are shown at the bottom. The figure at the top left shows the
hidden unit representations of the patterns in a 2-2-1 sigmoidal network with bias fully
trained to the global error minimum; the linear boundary implemented by the hidden-
to-output weights is marked as a gray dashed line. Note that the categories are almost
linearly separable in this y;y:-space, but one training point is misclassified. At the top
right is the analogous hidden unit representation for a fully trained 2-3-1 network with
bias. Because of the higher dimension of the hidden layer representation, the categories
are now linearly separable; indeed the learned hidden-to-output weights implement a
plane that separates the categories.



earned weights — what do they mean?

Input to hidden weights

O Such weights at a single unit describe the input pattern that
leads to a maximum activation.

[ Finds feature groupings
d Example : next page(Fig. 6.13 in DHS)

Q Input to hidden weights for a 2-hidden nodes topology shows
the features emphasized for each node.



sample training patterns L
B M B T S ERE ‘
M , - M .‘__. r-

i

-

FIGURE 6.13. The top images represent patterns from a large training set used to traif :
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show :
the input-to-hidden weights, represented as patterns, at the two hidden units after train-
ing. Note that these learned weights indeed describe feature groupings useful for the
classification task. In large networks, such patterns of learned weights may be ::iifﬁcult
to interpret in this way. |




General rules to follow when implementing MLP and Back Propagation
Algorithm (Practical Implications)

 Activation Function - works with any continuous function with
derivative f' = f(1-f)

 (Gaussian activation functions are also used, especially if it is
guessed that the data is generated by gaussian distributions.



Proper Activation Functions:

‘/ l4e™
a

LA E— -Should saturate
-Should be nonlinear
| -Should be smooth
o -"0dd" function preferred because
they lead to faster convergence(f-
a)=-f(a).
"""""""" iy -Monotonicity

— €

(@)= atanh(bar) = a{e;b: - }
e

-is a good sigmoid function

+e



Scaling inputs

* If the input features have different units, then they should be
normalized to have zero mean and standard deviation=1.
Otherwise, the network will train with higher values. Same is
true even with same unit but different sizes.

Target Values

Given Odd Function as sigmoid
------------------- d=1.7

+1/
a

 Should the target values be selected as d?
« No, since it's never reached, the algorithm will not terminate.
« Use +1, -1 instead.



Number of Hidden Units(n,,)

Complicated boundaries require higher n

Nearly linear boundaries require small no. of n,

But if you don't have enough samples, no. use of using high n
Rule of thumb: n,= n/10 where n- total no. of training samples

Initializing Weights

Starting with zero weights cause "no learning” since
All zero weights lead to all-zero outputs

Updating weights at hidden nodes cause no change; remember
the formula
w,(t+1)=w,;(t)+no, Xi

Uniform learning: all weights reach their fixed values at the
same time. We want fast and uniform learning.

Rule of thumb: Choose weights randomly from a uniform
distribution



« Rule of thumb for initializing hidden to output weights:

1 1

<, <—
\ Py Ay

_ @,
@, 0

« Rule of thumb for initializing input to hidden weights:

1 1
—— <, <——

Jd Jd

* Calculated output to be in correct range in sigmoid.



Learning Curves

J/n= average error per pattern plotted against number of epochs
(iterations) in the backprop algorithm

Learning set: samples used in training
Test set. measures the performance
Validation set. used to decide when to stop

= EROChE

2 3 4 5 a6 7 8 9w dn 1

FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epachs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/n3 ., J,. The validation error
and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
sel, From: Richard O, Duda, Peter E. Hart, and David . Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.



Validation and Cross-validation in training

In general, the labeled data is randomly divided into two :
learning and validation sets (they should not overlap)

The training should stop when validation set passes a minimum

M-fold cross-validation: The training set is divided info m
randomly selected disjoint sets of almost equal size

System is trained m times, each time one of these being used as
validation set

Overall performance is measured as the average of m errors
found.

Approach can be used at different places: for example, optimal
k in k-nn can be found using cross validation.



METU Informatics Institute
Min720

Pattern Classification with Bio-Medical
Applications

Part 11:

UNSUPERVISED LEARNING
AND CLUSTERING



UNSUPERVISED LEARNING AND CLUSTERING
No class labels for learning samples.

We need additional means to label and classify - can be done
separately (first label then classify) or together.

PARAMETRIC APPROACH- Estimation of class conditional densities
NONPARAMETRIC - CLUSTERING

Problem:
"& " Given samples X;, X,,..........., X,
x,&agx Group them into clus’rers so ’rha’r
BaL samples in same cluster are
%, “similar"”
Ry

Easy separation
example



Difficult separation



FIGURE 6.7. Data sets having identical second-order statistics.



Similarity Measures

We would like to group the learning samples so that the samples
that fall in the same cluster are "similar” and others are “"non-
similar”.

S(x;,x,)=0
S(x;,x;)>0 if i#]
S(x;,x;) -smallif x; &x; belong to same cluster.
S(x;,x;) -largeif X, & x; are at different clusters.
S(xiaxj) = S(xjaxi)

Euclidian Distance is such a measure.
Mahalanobis, cosine distances

Cosine distance: angle wrt origin Y J
Non-metric :

T

S(X;, X;)=

v

cosine of the angle between X, and X, so larger if they lie on the
same line.



Cosine distance - measures the angle between two vectors X and X'

When the features are binary, assume xi, xj binary vectors

t 141010
X; X; - number of '1''s shared

x;x; / x'x;+x'x,—x/x, tanimoto distance

Number of shared features (being 1),
normalized with number of features that are 1 in x; and x;.
Used in information retrival.



Scaling Effects | . .
X2 . h'ﬁ
14
.8
.6
4 .
.2
g
xz 'E- xi
5
4
3
2
g
o i - : - . . " . - X
25 5 75 1 - 1.25 1.5 1.75 _ 2

FIGURE 10.8. Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left; points in
one cluster are shown in red, while the others are shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (as shown at the right). Alternatively, if the vertical axis is shrunk by
a factor of 0.5 and the horizontal axis is expanded by a factor of 2.0, smaller more nu-
merous clusters result (shown at the bottom). {n both these scaled cases, the ass:gnment

of points to clusters differ from that in the original space.



Scaling Effects

X X2
A A
. . ’ .
.i.l s ¢ . _ | .'.
—p e e e e —eg—Ap- X, A . X
: . e ' ol b
s " . .
. ! FE K,

FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here, /



Criterion Functions for Clustering

1.-3| Sl |- 1505
i=1

i=1 \ xeC;
_ 1 2
5= 2 2ol
n, xeC; x'eC;

c- number of clusters

M, - mean of the samples in the same cluster

Aim: determine the partition that will minimize J.

< Minimum variance partition ( sum of squared error criterion)

Sum of squared error criterion

1
M, = o ZX Sample mean for cluster D,

i xeD;

Sum of squared errors:

Je:ZZHx_Mi 2

i=1 xeD;

Using J, results well for compact clusters.



Basic ISODATA Algorithm (k-means)
Assume that there are k categories
1. Choose k arbitrary points in space as cluster centers.

2. Assign samples to their nearest cluster.

3. Update M's. If any means changed value, go to 2. Otherwise
stop.

2

‘x—Ml.

May fall into local minimum.  min



Versions:

If the number of clusters is not specified, a criterion
(threshold) for eliminating some clusters are used, such as:

If Ji> @ eliminate cluster i and merge it with another

- Distances between cluster centers may be computed to
determine how to merge..

Iterative Optimization
Trying all combinations to find minimum Je - Exhaustive search
IS expensive

Iteratively - remove samples from one cluster to the other until a
minima is obtained.

1. Arbitrarily select an initial grouping into a clusters. Find sample
means




2. Select an arbitrary point and move it to another cluster if that

change reduces J.,.

3. Iterate until no change in J, occurs.

For the sample X™ to be removed from c; and go to ¢;, the mean m;

m .

J

changes as follows:

. 1
nj+1

1
nj+1

g




Here, J's can be updated accordingly

n, 2

Ji*:‘]i_

‘x—AL

n —1
i n,
J. =J, +—2

J J

2
x|
nj+1

Iterative Optimization Cont.
Step 1: Start with arbitrary clusters.
Step 2: Move a sample from one cluster to another one with
minimizing S.
S = ZSZ. s, / n; sample variance
i=1

Sample X goes from cluster i to j if:

b >
1

2
>
ni o nj+1




For many clusters, step 2:
Find (

e i
P = 7

j=i

Transfer X to C ifp, < p; forall j.
This turns out to be:

Measure the normalized distances to other sample means. Assign it
to the cluster with shortest distance.

Move to C;

When n;, n; large, converts into so called "k-means” or "TSODATA"
algor'l’rhm where sample counts are not taken into account.



R Algorithm 3. (Basic Iterative Minimum-Squared-Error Clustering)

1
2
3
4

Ln

begin initialize n, ¢, m;, m,, ..., m,

O WO 0o -1 3

do randomly select a sample X
i « argmin |lmy - x|  (classify X)

if n; # 1 then compute

[
n; +1"x m]”2 ] #l

pj = ! |
IX ﬂhﬂz J =i

». nJ-l ,
if p < p; forall j then transfer X to Dk
recompute J,, m;, m;
until no change in J, in n attempts
!_e_t!m.mh My, ..., M

end




Hierarchical Clustering
A different approach to clustering.
Hierarchy in living species
« Each species is a class by itself.
« Combine the ones that are closest

«  Continue combining until the number of clusters are what is
desired or a criterion is satisfied.

1-d problem
B
7
--------------------------------------------------------------------------------- 3 clusters
U
fb a4 s
Issues:

« How do we measure distance between clusters?
*  When do we stop?
« Do we start from bottom or from top?



Basic Bottom-up Hierarchical Clustering Algorithm
1. Start taking each sample as a cluster. n=m (n of samples)

2. Measure d. ' distance between clusters D, and D Join two
clusters D; and D, for which

d,,=mind,

n=n-1;

3. If n<k  stop. k:number of desired clusters
Else go to 2.

d;; can be defined in many ways.

d

min; ;

where sisiniand z is in j.

)

avg; ;

d

max




dmin
e dmax
Example

Apply hierarchical clustering with d,;, to below data where c=3.
Nearest neighbor clustering

will form elongated clusters!




Computational Complexity of Hierarchical Clustering
Assume

n - samples

d - dimension

c - clusters to be formed.

Use d..,(D,D),)

- To find the nearest clusters at levelc
- 0(d) for each pair

- n(n-1) pairwise calculations, 6’(n2) (each sample with all others
except itself)

- Finding the minimum distance pair

overall oc O(cn’d)



NN clustering algorithm and minimal spanning trees

If we continue with NN to end up with a single cluster, we obtain
“minimal spanning tree".

Spanning tree: a graph with no loops that will contain a path
between any two points.

Minimal spanning tree: a spanning tfree with a minimum total length
(length : sum of path lengths)

Top-down Clustering: Graph theoretical approach so a top-down
approach will

« Obtain the minimal spanning tree using a fast algorithm
« Remove the longest edge
« Continue removing until desired number of clusters are reached.



Solution with iterative clustering algorithm
Step 2 of Bottom-up hierarchical clustering algorithm:
Join clusters i and j if that will result with smallest increase in

d(Di, Dj) = \/

nl.nj

2
v, - )|
n, +n,

This is the same as joining clusters with closest means, normalized
with the number of samples in each cluster.

One way to use above algorithm is: to obtain an initial partitioning
for iterative optimization.



