
Example

Apply hierarchical clustering with dmin to below data where c=3.

Nearest neighbor clustering

dmin
dmax

will form elongated clusters!



Computational Complexity of Hierarchical Clustering

Assume 

n – samples

d – dimension

c – clusters to be formed.

Use  

- To find the nearest clusters at level     ,

- for each pair

- n(n-1) pairwise calculations,              (each sample with all others 
except itself)

- Finding the minimum distance pair
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NN clustering algorithm and minimal spanning trees

If we continue with NN to end up with a single cluster, we obtain 
“minimal spanning tree”.

Spanning tree: a graph with no loops that will contain a path 
between any two points.

Minimal spanning tree: a spanning tree with a minimum total length 
(length : sum of path lengths)

Top-down Clustering: Graph theoretical approach so a top-down 
approach will

• Obtain the minimal spanning tree using a fast algorithm

• Remove the longest edge

• Continue removing until desired number of clusters are reached. 



Solution with iterative clustering algorithm

Step 2 of Bottom-up hierarchical clustering algorithm:

Join clusters i and j if that will result with smallest increase in

This is the same as joining clusters with closest means, normalized 
with the number of samples in each cluster.

One way use above to obtain an initial partitioning for iterative 
optimization!
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Competitive Learning and “Self-Organizing Feature Maps”

- A NN approach to clustering

- In all procedures that are satisfied, since a global criterion is 
minimized, an addition of a new sample changes the results 
dramatically.

- Competitive Learning: Only the clusters that are “close” to the 
new sample are affected.

- NN terminology used.

- Single layer NN

- Consider a fully connected network.

c cluster units

d+1 input units



Kohonen’s Self Organizing Feature Maps:

(Also called Vector Quantization)

- 2-d, single layer topology

- N inputs, k outputs

- Feed-forward, fully connected (all inputs connected to all 
outputs)

- Used for both supervised and unsupervised learning (clustering)

- Topologically similar inputs map to topologically close outputs

- Topological neighborhoods defined

- Neighborhoods start large and shrunk during learning.

A neighhorhood

outputs

Nxx 1







Basic Kohonen Learning:

- Initialize all weights wij to small random values.

- For all X, repeat.

1) Compute 

2) Select node j* such that D(j) is minimum.

3) Update weights of nodes j1 and nodes in k in the neighboorhood
by  

- Reduce     . Reduce this neighborhood.

- Repeat until converges

A more general weight update :
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Not very good for plosives

10ms interval – Quasiphonema

A sequence of quasiphonemes as phonoemes

Post- Processing: String matching 

Isolated, word recognition with 1000 words.

c1

c3

c2



Kohonen Learning:

- A high number of iterations needed(10,000 at least)

- Nc- neighborhood should be selected carefully.

- should start around 1 and should be decreased in time.

Supervised from unsupervised:

• Use labeled samples as unlabeled.

• Iterate the learning algorithm for clustering.

• Label samples and adjust borders accordingly.

www.ai-junkie.com/ann/som/som1.html

1. Augment and normalize input patterns to unit length.

2. Initialize all weights                        to random values. (You may 
choose c random points from data and assign them as weights.) 
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3. When a new pattern X is presented, find

4. Update the only weight with the highest net function.

5. Update rule:

6. Repeat 3-5 until no change occurs in w’s.

7. Return                         .

8. The clusters are formed by assigning each pattern to wj with 
highest netj.
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