
MATLAB FOR PATTERN

RECOGNITION

MIN 720 – Pattern Classification for Biomedical

Applications

05/04/2011

How Much Do We Know?

� Anybody who has never used

MATLAB?

Outline

� An Introduction to MATLAB

� Generation of Random Data

� Basic Statistical Functions

� Parameter/Density Estimation Functions

� Classification/Clustering Functions

� MATLAB Toolboxes for Pattern

Recognition

MATLAB Environment

� Workspace: Variables defined so far.

� Command History

� Command Window

� Editor

� Plot Window

� Current Directory: Start by setting the current directory
to the directory that you are working. Generally, it is
where your files are.

� Workspace Window

LOOKFOR & HELP

� LOOKFOR: Type ‘lookfor smth’ to learn the
name of functions that are related to ‘smth’.

� HELP: Type ‘help function_name’ to learn how
that function works, its inputs and outputs.

Expressions
� Variables:

� No need to make type declarations or

dimension statements

� When Matlab encounters a new variable

name, it automatically creates the variable

and allocates the appropriate amount of

storage.

Example:

>> num_students = 25

Creates a 1-by-1 matrix named num_students and

stores the value 25 in its single element

Expressions
� Cell:

� A matrix which can store a separate variable

(matrix with different dimensions, etc.) in

each of its indices.

� Useful for storing many matrices in a single

structure in a compact manner.

Example:

a=cell(2,2);

a{1,1}=[2 4];

a{1,2}=[5 8; 8 9];

Expressions
� Structures:

� Can store different attributes of an object in a

single structure (like in Object Oriented

Programming).

Example:

student.year = 3;

student.number=1556782;

Creates a structure and stores the declared

attributes.

Functions

� Standard elemantary mathematical functions;

abs, sqrt, exp, sin N

� For a list of elemantary mathematical functions

type

>> help elfun

� For a list of more advanced mathematical and

matrix functions type

>>help specfun

>>help elmat

� Most of the functions are overloaded.

Vectors and Matrices

� Scalar: ‘5’, pi N

� Vector: Ordered list of numbers

Example: to represent a point in three

dimensional space

>>p1=[1 3 4]

p1 = 1 3 4

>>p2=[1;3;4]

p2 = 1

3

4

Accessing a Vector

� Access to the elements of vectors

>>p1(1)

ans =

1

Creating Matrices

� Matrices:

>> a = [1 2 2 1]

a = 1 2 2 1

>> b= [1; 2; 2; 1]

b=

1

2

2

1

>>c=zeros(1,2);

c= 0 0

>>d=ones(1,3);

d= 1 1 1

Creating Matrices from Vectors

� It is possible to create matrices from row or

column vectors, as long as all of the vectors

being used to create the matrix have the same

number of elements.

� ExamplesN

Accessing a Matrix
� Accessing element of a matrix

>>a=[2 4; 5 8];

>>a(1,:)

2 4

>>a(:,2)

5

8

� Accessing subset of a matrix

>>b=[1 2 3 ; 4 5 6; 7 8 9];

>>b(2:3,2:3)

5 6

8 9

Matrix Operations

� Matrix operations like, (for matrices “x” and “y”)

� Determinant of a matrix (det(x))

� Inverse of a matrix (x^-1) or inv(x)

� Transpose of a matrix (x’)

� Element by element multiplication(x.*y),
division(x./y)

� Matrix multiplication(x*y), division(x/y),
summation(x+y), subtraction(x-y)

� N are defined in MATLAB.

Flow Control-IF

>> if a+b==5

m=1;

elseif a+b==3

m=2;

end

>>

Flow Control-Switch

>> switch (n)

case 0

M=0

case 1

M=1

otherwise

M=2

end

Loops

For/End

a = [0.8 0.1; 0.2 0.9 ; 0.4 0.6]

>> for i = 1:1:3

x(i,:) = a(i,:).*i

end

While/End

� a=3; ax=0

� while a==3

� ax=ax+2

� if ax>50

� a=4

� end

� end

� Avoid using Loops in Matlab.

M-Files: Scripts And Functions

� Scripts: Do not accept input arguments or

return output arguments. They operate on data

in the workspace.

� Functions: can accept input arguments and

return output arguments. Internal variables are

local to the function.

Function Definition

� Name of the function and the file should be the

same.

function[output1,output2]=example(input)

Graphical Representation

� Generally ‘plot’ is used for drawing graphics.

>>plot(x) ;

plots the columns of x versus their index.

Many options are provided for this

function. ‘stem’ can also be used.

o “imagesc” is used to display an image or
visualize a 2D matrix.

figure

imagesc(A)

colormap(gray)

Read & Write Files

� Load, Save,Saveas

� Textread

� N

� There are many other functions for file

operations. Check File I/O part in Mathwork’s

Help.

Generating Random Data

There are many functions for generating

random samples from a desired distribution

with the specified parameters.

� random('name',a,b,c,....) creates a matrix

with the specified dimensions whose entries

are samples drawn from the specified

distribution.

>> x1 = random('unif',0,1,2,4)

0.8003 0.4218 0.7922 0.6557

0.1419 0.9157 0.9595 0.0357

Generating Random Data

� normrnd(mu,sigma,m,n) creates a mxn matrix

whose entries are samples drawn from a

normal distribution with specified parameters.

>> normrnd(50,10,2,5)

45.674 51.253 38.535 61.891 53.272

33.344 52.876 61.909 49.623 51.746

� exprnd(mu,m,n) creates a mxn matrix from an

exponential distribution.

>>exprnd(30,2,3)

13.1593 12.4551 37.1646

6.0277 32.1909 32.2592

Generating Random Data

� mvnrnd(mu,cov,n) creates a nxd matrix whose

indices are drawn from a d dimensional

multivariate gaussian distribution.

>> mu=[5 10];

>> cov=[2 -1; -1 3];

>> mvnrnd(mu,cov,3)

6.7734 10.0164

2.7461 10.4947

2.9622 12.1099

There are also functions for random data

generation of other common distributions.

Likelihood Evaluation Functions

� They calculate likelihood for a specific

distribution in a given point.

� normpdf(x,mu,sigma)

>> normpdf(4,5,1)

0.2420

� exppdf(x,mu)

>>exppdf(10,20)

0.0303

� (betapdf(), mvnpdf(), etc.)

Basic Statistical Functions

� Functions for calculating the descriptive
statistics of distributions.

� mean(x) returns the mean value of a 1D
matrix.

>>x=[2 8 4];

>> mean(x)

4.6667

� Std(x) returns the standard deviation (with
Bessel’s correction(correction factor n/(n-1))

std(x)

3.0551

Basic Statistical Functions

� var(x) returns the variance (with Bessel’s
correction)

>> var(x)

9.3333

� median(x) returns the sample of the
distribution which is in the middle rank when
samples are ordered.

>>median(x)

4

Basic Statistical Functions

� cov(x) returns the variance (with Bessel’s
correction)

>>x=[1 2 ;3 4];

>> cov(x)

2 -1

-1 3

� mean2(x) and std2(x) are functions for 2D case.

>>mean2(x)

2.5000

>> std2(x)

1.2910

Distance/Metric Functions

� mahal(y,x) returns the Mahalanobis distance of
the data points(rows) of y to the distribution
characterized by the samples(rows) of x.

>>x=[2 3; 4 7 ; 1 5];

>> y=[2 7];

>> mahal(y,x)

2.3333

� pdist(x) returns the Euclidean distance between
pairs of data(rows) points of x.

>> pdist(x)

4.4721 2.2361 3.6056

Distance/Metric Functions

� pdist(x,distance) can be used to find the distance
between pairs of data of x with the specified
distance metric.

>> pdist(x,'cityblock')

6 3 5

� norm(x) returns the norm of a matrix(or vector).

>>norm(x)

10.0906

Parameter Estimation Functions

� normfit(x) returns the mean and standard
deviation of the data that is assumed to be
originated from normal distribution.

>> x=[3 2 6 4 7 3];

>>[mu_est,sig_est]=normfit(x)

mu_est =

4.1667

sig_est =

1.9408

Parameter Estimation Functions

� expfit(x) returns the mean of the data that is
assumed to be originated from exponential
distribution.

>>expfit(x)

4.1667

� There are similar functions for other commonly
used distributions. The confidence intervals(with
adjustable confidence) may also be obtained for
the estimates.

Parameter Estimation Functions

� mle(x,’distribution’,’dist’) returns the maximum
likelihood (ML) estimate of the parameters that
is assumed to be originated from the specified
distribution by ‘dist’.

>>mle(x,'distribution','normal')

4.1667 1.7717

>> mle(x,'distribution','gamma')

5.6322 0.7398

When it is used as mle(x)(with no distribution
specification), normal distribution is assumed.

Density Estimation Functions

� ksdensity(x) returns the computed density
estimate using a kernel smoothing method.

>> x=[3 2 6 4 7 3];

>> ksdensity(x)

-2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

x

D
e
n
s
it
y

Kernel Density Estimate

Density Estimation Functions

� parzenwin(n) forms a parzen window having n
elements.

>>x=parzenwin(100);

>> plot(x)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parzen Window

Classification/Clustering Functions

� knnclassify(sample, training, group) classifies

each data of the sample matrix using nearest

neighbor rule which is supervised by the

training data and its labeling.

>> x=normrnd(10,3,5,1)

13.2850

4.3780

11.2845

12.6869

12.1929

>> y=normrnd(13,3,5,1)

11.8676

12.1123

8.5746

12.2980

13.3553

Classification/Clustering Functions

>> training=[x;y];

>> group=[ones(5,1); 2*ones(5,1)];

>> sample=normrnd(11,3,4,1)

11.9444

15.3305

9.9471

12.8697

>> knnclassify(sample, training, group)

[2; 2;1;1]

Classification/Clustering Functions

� knnclassify(sample, training, group,k)

classifies each data using k-nearest neighbor

rule.

>>knnclassify(sample, training, group,3)

[2;1;2;1]

Note that classification result changes.

� knnclassify(sample, training,

group,k,distance) performs classification

using the specified distance metric (default is

euclidean distance.).

Classification/Clustering Functions

� kmeans(x,k) clusters the data into k classes

using k means clustering algorithm.

>>kmeans(training,2)

2;2;1;2;2;1;1;1; 1; 2

� kmeans function can also be used with other

distance metrics(kmeans(x,k,’distance’,’dist’).

>> kmeans(training,2,'distance','cityblock')

1;1;2;1;1; 2;2; 2; 2;1

Classification/Clustering Functions

� classify(sample,training,group) classifies the

sample data into classes using the training

dataset labeled with group. It performs

discriminant analysis.

>> classify(sample,training,group)

[2;2;1;2]

� The type of discriminant function to be used

can be adjusted.

>> classify(sample,training,group,'quadratic')

[2;1;2;2]

Classification/Clustering Functions

� The priors of the classes can be incorporated

into classification.

>> prior=[0.1 0.9];

>>classify(sample,training,group,'quadratic',prior)

[2;2;2;2]

>> prior=[0.9 0.1];

>> classify(sample,training,group,'quadratic',prior)

[1;1;1;1]

� The choice of priors is critical.

Classification/Clustering Functions

� clusterdata(x,cutoff) clusters the data using a

hierarchical cluster tree. cutoff is a parameter to

adjust the number of clusters to be formed at the

end (0<cutoff<2).

>> x=normrnd(20,2,5,1);

>> y=normrnd(30,2,5,1);

>> z=[x;y];

>> t=clusterdata(z,1)

[4;4;2;1;1;3;3;3;3;3]

Classification/Clustering Functions

>> t=clusterdata(z,1.2)

[1;1;1;1;1;1;1;1;1;1]

� The distance metric to be used can be changed

and the maximum number of clusters to be

formed can be specified.

Classification/Clustering Functions

� voronoi(x,y) forms the voronoi diagram for the

datasets x and y.

>> x=mvnrnd([20 ; 15],[2 0 ;0 2],10);

>> y=mvnrnd([23 ; 12],[2 0 ;0 2],10);

>> voronoi(x,y)

13 14 15 16 17 18 19 20 21 22
10

15

20

25
Voronoi Diagram

Classification/Clustering Functions

� clustergram(x) draws the dendogram of the

dataset x. The similar and distant datasets are

visualized.

>> z=[x;y];

>> clustergram(z)

2 1

 8
 1
 4
 7
 6
16
10
14
18
 3
 2
13
20
15
19
 9
12
 5
17
11

Dimension Reduction Functions

� pcacov(v) performs Principal Component

Analysis (PCA) using the covariance matrix and

returns the coefficient matrix.

>> v=[1 0.4 -0.2; 0.4 1.3 0.2; -0.2 0.2 0.8];

>> pcacov(v)

-0.5485 0.5811 0.6012

-0.8330 -0.3171 -0.4534

-0.0729 -0.7495 0.6580

Dimension Reduction Functions

� PCA can also be performed with princomp(x)

directly from the data.

>>princomp(x)

0.6668 0.7453

0.7453 -0.6668

MATLAB Toolboxes

� A Toolbox is a collection of m-files developed to

perform computation on a particular domain.

Ex:Animation toolbox(Developing scientific

animations)

� Some toolboxes are present inside MATLAB but

some are not embedded. They are available on

the Internet.

MATLAB Toolboxes

� Neural Networks Toolbox:

Includes tools for designing, implementing,

visualizing and simulating neural networks.

� Statistics Toolbox:

Provides tools for modeling and analyzing data,

simulating systems, developing statistical

algorithms, learning and teaching statistics.

MATLAB Toolboxes

� PRTools Toolbox:

Includes algorithms for data generation, training

classifiers, features selection, density

estimation, feature extraction, cluster analysis.

� Statistical Pattern Recognition Toolbox:

It provides users with procedures for discriminant

functions, feature extraction, density estimation,

support vector machines, visualization,

regression, etc..

MATLAB Toolboxes

� PRTools Toolbox:

Includes algorithms for data generation, training

classifiers, features selection, density

estimation, feature extraction, cluster analysis.

� Statistical Pattern Recognition Toolbox:

It provides users with procedures for discriminant

functions, feature extraction, density estimation,

support vector machines, visualization,

regression, etc..

MATLAB Toolboxes

� Fuzzy Logic Toolbox

� Classification Toolbox

� Clustering Toolbox

� ClusterPack Toolbox

� GHSOM Toolbox

� HMM Toolbox

� HMMBOX Toolbox

� LPSVM Toolbox

� NSVM Toolbox

MATLAB Toolboxes

� PCNN Toolbox

� SDH Toolbox

� SOM Toolbox

� SSVM Toolbox

� SVM Toolbox

� SVM Classifier Toolbox

� Bioinformatics Toolbox

END

Thank you for listening.

Any Questions or

Comments ??

