An Introduction to Support Vector

!'_ Machines




Outline

= History of support vector machines (SVM)

= Two classes, linearly separable
= What is a good decision boundary?

= Two classes, not linearly separable
= How to make SVM non-linear: kernel trick
= Conclusion
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attern Analysis

hree properties:
=« Computational efficiency
= The performance of the algorithm scales to large datasets.

= Robustness
=Insensitivity of the algorithm to noise in the training examples

= Statistical Stability

= T he detected regularities should indeed be patterns of the
underlying source
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istory

he mathematical result underlying the kernel
trick, Mercer’s theorem, is almost a century old
(Mercer 1909). It tells us that any ‘reasonable’
kernel function corresponds to some feature
space.

= The underlying mathematical results that allow
us to determine which kernels can be used to
compute distances in feature spaces was
developed by Schoenberg (1938).
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History of SVM

learning theory by Vapni
= SVM was first introducec

= SVM is a classifier derived from statistical

K and Chervonenkis
in COLT-92

s SVM becomes famous w

nen, using pixel maps

as input, it gives accuracy comparable to
sophisticated neural networks with elaborated
features in @ handwriting recognition task

= Currently, SVM is closely related to:

= Kernel methods, large margin classifiers, reproducing
kernel Hilbert space, Gaussian process
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Two Class Problem: Linear Separable
=& Case

= Many decision
boundaries can

®@ Class 2
., © separate these two
2 AL classes
O ., @ = Which one should

= we choose?

Class 1
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=& Example of Bad Decision Boundaries

@ C(Class 2
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Good Decision Boundary: Margin
=t Should Be Large

= The decision boundary should be as far away
from the data of both classes as possible
= We should maximize the margin, m

W D
m — ———
E"‘Q * O | ‘W‘ ‘
] ”’@ Class 2
O
wlx +b=1
O
Class 1
T Ty +b=0
w'xX+b=-1" W X1+b=
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=t The Optimization Problem

slet {x, ..., x,} be our data set and let )
{1,-1} be the class label of x

= The decision boundary should classify all points
correctly = y;(w!x; +b) > 1, Vi

= A constrained optimization problem
1
2
subject to y;(w'x;, +b) > 1 \4)

Minimize =||w||?
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The Optimization Problem

= We can transform the problem to its dual

n ]_ n T
max. W(Oﬂ) = Z o — 5 Z QO YY X5 X
i=1 i=1,j=1
n
subject to a; > 0, )  ayy; =0
1=1

= This is a quadratic programming (QP) problem

= Global maximum of o; can always be found
n

= W can be recovered by W = Z ;YiXs
i=1
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Characteristics of the Solution

= Many of the o, are zero
= W iS a linear combination of a small number of data
= Sparse representation

= X, With non-zero o, are called support vectors (SV)
= The decision boundary is determined only by the SV
=Let £ (=1, ..., s) be the indices of the s support

vectors. We can write W = Zf;:l Qt Yt Xt

= For testing with a new data z
= Compute W'z + b= >%_ ay;y;(3¢,2) + b and
classify z as class 1 if the sum is positive, and class 2

otherwise
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=t A Geometrical Interpretation

. w“‘ “%‘WTX _I_ b — 1
. IR IR
a9=0 ’00‘ T ‘
O3= __
Class 1 3 w'x+b=0
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Some Notes

= There are theoretical upper bounds on the error
on unseen data for SVM
= The larger the margin, the smaller the bound
= The smaller the number of SV, the smaller the bound

= Note that in both training and testing, the data
are referenced only as inner product, x'y

= This is important for generalizing to the non-linear
case
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=+ How About Not Linearly Separable

= We allow “error” &, in classification
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=t Soft Margin Hyperplane

= Define =0 if there is no error for x;

= & are just “slack variables” in optimization theory
(wix; +b>1-¢ y; = 1
Swlix;+b< -14¢ yi=-1
& >0 Vi

. .1
= We want to minimize 3//w|[* 4+ C > &
« C: tradeoff parameter between error and margin
= The optimization problem becomes
C e 1
Minimize 3||w||? + C Y, &

subject to y;(wix; +b)>1—-¢;, & >0
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The Optimization Problem

= The dual of the problem is

n n

1 T

max. W(Oﬂ) = Z o — 5 Z QO YY X5 X
i=1 i=1,j=1

n
subject to C > ;> 0, ) ayy; =0

i=1
=W is also recovered as W = 3.7 a; Yt X

= The only difference with the linear separable
case is that there is an upper bound Con o,

= Once again, a QP solver can be used to find o,
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Extension to Non-linear Decision
Boundary

= Key idea: transform x; to a higher dimensional
space to “make life easier”
= Input space: the space x; are in
= Feature space: the space of ¢(x;) after transformation

= Why transform?

=« Linear operation in the feature space is equivalent to
non-linear operation in input space

= The classification task can be “easier” with a proper
transformation. Example: XOR
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Extension to Non-linear Decision
Boundary

= Possible problem of the transformation

= High computation burden and hard to get a good
estimate

= SVM solves these two issues simultaneously
= Kernel tricks for efficient computation
= Minimize ||w| |2 can lead to a “good” classifier

: Feature space :
04/21/10 Input space P
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Example Transformation

= Define the kernel function K'(x,y) as

K(x,y) = (1 + z1y1 + 22y2)?
= Consider the following transformation

o(
¢(

L]

K2
o
_y2_

(6(| 73

) = (1,V2x1,V2x0, 2%, 25, V21175)
) = (1,V2y1, V2y2,¥%, ¥3, V2y192)

D, e[ 85 )) = (1 + 2101 + 22y2)7

= K(x,y)

= The inner product can be computed by K
without going through the map ¢(.)

04/21/10
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Kernel Trick

= The relationship between the kernel function Kand
the mapping ¢(.) is

K(x,y) = (¢(x), ¢(y))
= This is known as the kernel trick
= In practice, we specify K, thereby specifying ¢(.)
indirectly, instead of choosing ¢(.)

= Intuitively, K (X,y) represents our desired notion of
similarity between data x and y and this is from our
prior knowledge

= K(X,y) needs to satisfy a technical condition
(Mercer condition) in order for ¢(.) to exist
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Examples of Kernel Functions

= Polynomial kernel with degree ¢
K(x,y) = (xy +1)¢
= Radial basis function kernel with width o
K (x,y) = exp(—||x — y[|*/(20°))
= Closely related to radial basis function neural networks
= Sigmoid with parameter « and 6
K(x,y) = tanh(kx!ly + 0)
= [t does not satisfy the Mercer condition on all x and 6

= Research on different kernel functions in different
applications is very active
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Multi-class Classification

= SVM is basically a two-class classifier

= One can change the QP formulation to allow
multi-class classification

= More commonly, the data set is divided into two
parts “intelligently” in different ways and a
separate SVM is trained for each way of division

= Multi-class classification is done by combining
the output of all the SVM classifiers
= Majority rule
= Error correcting code

= Directed acyclic graph
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Software

= A list of SVM implementation can be found at
http://www.kernel-machines.org/software.html

= Some implementation (such as LIBSVM) can
handle multi-class classification

= SVMLight is among one of the earliest
implementation of SVM

= Several Matlab toolboxes for SVM are also
available
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Summary: Steps for Classification

= Prepare the pattern matrix
s Select the kernel function to use

= Select the parameter of the kernel function and
the value of C

= You can use the values suggested by the SVM
software, or you can set apart a validation set to
determine the values of the parameter

= Execute the training algorithm and obtain the o,

= Unseen data can be classified using the o, and
the support vectors
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Strengths and Weaknesses of SVM

= Strengths

= Training is relatively easy
= No local optimal, unlike in neural networks

= It scales relatively well to high dimensional data

= Tradeoff between classifier complexity and error can
be controlled explicitly

= Non-traditional data like strings and trees can be used
as input to SVM, instead of feature vectors

= Weaknesses
= Need a “good” kernel function
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Other Types of Kernel Methods

= A lesson learnt in SVM: a linear algorithm in the
feature space is equivalent to a non-linear
algorithm in the input space

= Classic linear algorithms can be generalized to
its non-linear version by going to the feature
space
= Kernel principal component analysis, kernel
independent component analysis, kernel canonical

correlation analysis, kernel k-means, 1-class SVM are
some examples
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Conclusion

s SVM is a useful alternative to neural networks

= TWo key concepts of SVM: maximize the margin
and the kernel trick

= Many active research is taking place on areas
related to SVM

= Many SVM implementations are available on the
web for you to try on your data set!
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Resources
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http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/
http://www.support-vector.net/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http://www.support-vector.net/icml-tutorial.pdf
http://www.support-vector.net/icml-tutorial.pdf
http://www.support-vector.net/icml-tutorial.pdf
http://www.support-vector.net/icml-tutorial.pdf
http://www.support-vector.net/icml-tutorial.pdf
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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istory

NOVA kernels were first suggested by Burges and
Vapnik (1995) (under the name Gabor kernels).

= Scholkopf, Smola and Mdller (1996) used kernel functions
to perform principal component analysis.

= Scholkopf (1997) observed that any algorithm which can
be formulated solely in terms of dot products can be
made non-linear by carrying it out in feature spaces
induced by Mercer kernels. Scholkopf, Smola and Miller
(1997) presented their paper on kernel PCA.
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verview

ernel Methods: New class of pattern analysis
algorithms

= Can operate on very general types of data

= can detect very general types of relations.

= A powerful and principled way of detecting
nonlinear relations using well-understood
linear algorithms in an appropriate feature
space.
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ernel Trick

ernel trick: Using a linear classifier
algorithm to solve a non-linear problem by
mapping the original non-linear observations into
a higher-dimensional space

= Linear classification in the new space equivalent to
non-linear classification in the original space

= Mercer’s theorem: Any continuous, symmetric,
positive semi-definite( i.e eigenvalues are
positive) kernel function K(x, y) can be expressed
as a dot product in a high-dimensional space.
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mbed Data into A Feature Space

h{x)

* -

Fig. 2.1. The function ¢ embeds the data into a feature space where the nonlinear
pattern now appears linear. The kernel computes inner products in the feature
space directly from the inputs.
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OTIVATION

inearly inseparable problems become linearly separable in higher
dimension space
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ernel function

ernel Function: A function that returns the
inner product between the images of two
inputs in some feature space.

s K(X1,X2)= <p(x1),p(x2)>

= Choosing K is equivalent to choosing ® (the
embedding map)
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n example-Polinomial Kernel

X =(X1,X2);

z=(21,22);

(x,2)" = (x121+ x222)" =

= X[z, + X527, +2X121X222 =

= <(xf, X7, N2x1x2), (27, Z2 \EZ1ZE)> =
= ($(x),4(2))
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(Gaussian RBF

Polynomial

Sigmoidal

inv. multiquadric
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ommon Kernel Functions

k(x.y) = exp (—IIX— .Y||2)

¢
(x-y) +6)°
tanh(k(x - y) + 6)
1

Vix=yP+e




tages in Kernel Methods

mbed the data in a suitable feature space
= Kernel functions
=Depend on the specific data type and domain knowledge

= Use algorithm based on linear algebra, geometry
and statistics to discover patterns in embedded
data.

= The pattern analysis component
=General purpose and robust
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tages in Kernel Methods(cont)

—= Kk(X,Z) K }} fix)=ZotKk(xi,x)

DATA FKERMEL FUNMCTION KERMNEL MATRIX PA ALGORITHM PATTEEM FUNCTIOM

=

= First - Create kernel matrix using kernel function
= Second - Apply pattern analysis algorithm
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=Lhe kernel matrix

K 1 2 R

I wix,x1) s(x.x2) - KX, Xe)
2 KXz, x1) kKixa,xz] - K(X2, X
€ w(xe,x1) w(xexa) - 85X, X

« Symmetric Positive Definite (positive eigenvalues)
« Contains all necessary information for the
learning algorithm
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Universal Kernel?

niversal kernel is not possible

= The kernels must be chosen for the problem.
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ernel Types

olynomial Kernels

= Gaussian Kernels

= ANOVA Kernels

= Kernels from Graphs

= Kernels on Sets

= Kernels on Real Numbers

= Randomized kernels

= Kernels for text

= Kernels for structured data: Strings, Trees, etc.
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ernels

Paolynomial kernel

All-subsets kernel

Gaussian kernel

ANOVA kernel

Alternative recursion for ANOVA kernel
General graph kernels
Exponential diffusion kernel

von Neumann diffusion kernel
Evaluating diffusion kernels
Evaluating randomised kernels
Intersection kernel
Union-complement kernel
Apreement kernel

Derived subsets kernel

Kernels on real numbers

Spline kernels

Vector space kernel

Latent semantic kernels

The p-spectrum kernel

The p-spectrum recursion
Blended spectrum kernel
All-subsequences kernel

Fixed length subsequences kernel
Naive recursion for gap-weighted
subsequences kernel
Gap-weighted subsequences kernel
Trie-hased string kernels

04/21/10

ANOVA kernel

Simple graph kernels

All-non-contiguous subsequences kernel
Fixed length subsequences kernel
Gap-weighted subsequences kernel
Character weighting string kernel

Soft matching string kernel

Gap number weighting string kernel
Trie-based p-spectrum kernel

Trie-hased mismatch kernel

Trie-based restricted gap-weighted kernel
Co-rooted subtree kernel

All-subtree kernel

Fixed length HMM kernel

Pair HMM kernel

Hidden tree model kernel

Fixed length Markov model Fisher kernel



attern Analysis Methods

upervised Learning
= Support Vector Machines
= Kernel Fisher Discriminant

= Unsupervised Learning
= Kernel PCA
= Kernel k-means
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pplications

eostatistics
= Analysis of mining processes through mathematical models
= Bioinformatics

= Application of information technology to the field of molecular
biology

= Cheminformatics

= Use of computer and informational techniques in the field of
chemistry.

= Text categorization

= Assign an electronic document to one or more categories, based
on Its contents

= Handwriting Recognition
= Speech Recognition
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