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Outline

History of support vector machines (SVM)

 Two classes, linearly separable

What is a good decision boundary?

 Two classes, not linearly separable

How to make SVM non-linear: kernel trick

Conclusion
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Pattern Analysis

 Three properties:
 Computational efficiency

The performance of the algorithm scales to large datasets.

 Robustness
Insensitivity of the algorithm to noise in the training examples

 Statistical Stability
The detected regularities should indeed be patterns of the 
underlying source
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History

 The mathematical result underlying the kernel 
trick, Mercer‟s theorem, is almost a century old 
(Mercer 1909). It tells us that any „reasonable‟ 
kernel function corresponds to some feature 
space.

 The underlying mathematical results that allow 
us to determine which kernels can be used to 
compute distances in feature spaces was 
developed by Schoenberg (1938).
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History of SVM

 SVM is a classifier derived from statistical 
learning theory by Vapnik and Chervonenkis

 SVM was first introduced in COLT-92 

 SVM becomes famous when, using pixel maps 
as input, it gives accuracy comparable to 
sophisticated neural networks with elaborated 
features in a handwriting recognition task

Currently, SVM is closely related to:

 Kernel methods, large margin classifiers, reproducing 
kernel Hilbert space, Gaussian process
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Two Class Problem: Linear Separable 
Case

Class 1

Class 2

Many decision 
boundaries can 
separate these two 
classes

Which one should 
we choose?
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Example of Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2
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Good Decision Boundary: Margin 
Should Be Large

 The decision boundary should be as far away 
from the data of both classes as possible

We should maximize the margin, m

Class 1

Class 2

m
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The Optimization Problem

 Let {x1, ..., xn} be our data set and let yi 

{1,-1} be the class label of xi

 The decision boundary should classify all points 
correctly 

A constrained optimization problem
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The Optimization Problem

We can transform the problem to its dual

 This is a quadratic programming (QP) problem

Global maximum of i can always be found

w can be recovered by
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Characteristics of the Solution

Many of the i are zero

w is a linear combination of a small number of data

 Sparse representation

 xi with non-zero i are called support vectors (SV)

 The decision boundary is determined only by the SV

 Let tj (j=1, ..., s) be the indices of the s support 
vectors. We can write

 For testing with a new data z

 Compute                                                      and 

classify z as class 1 if the sum is positive, and class 2 

otherwise
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6=1.4

A Geometrical Interpretation

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0

7=0

8=0.6

9=0

10=0
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Some Notes

 There are theoretical upper bounds on the error 
on unseen data for SVM

 The larger the margin, the smaller the bound

 The smaller the number of SV, the smaller the bound

Note that in both training and testing, the data 
are referenced only as inner product, xTy

 This is important for generalizing to the non-linear 
case
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How About Not Linearly Separable

We allow “error” i in classification

Class 1

Class 2
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Soft Margin Hyperplane

Define i=0 if there is no error for xi

 i are just “slack variables” in optimization theory

We want to minimize

 C : tradeoff parameter between error and margin

 The optimization problem becomes
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The Optimization Problem

 The dual of the problem is

w is also recovered as

 The only difference with the linear separable 
case is that there is an upper bound C on i

Once again, a QP solver can be used to find i
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Extension to Non-linear Decision 
Boundary

 Key idea: transform xi to a higher dimensional 
space to “make life easier”

 Input space: the space xi are in

 Feature space: the space of (xi) after transformation

Why transform?

 Linear operation in the feature space is equivalent to 
non-linear operation in input space

 The classification task can be “easier” with a proper 
transformation. Example: XOR
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Extension to Non-linear Decision 
Boundary

 Possible problem of the transformation

High computation burden and hard to get a good 
estimate

 SVM solves these two issues simultaneously

 Kernel tricks for efficient computation

Minimize ||w||2 can lead to a “good” classifier

(  )

(  )

(  )
(  )(  )

(  )

(  )
(  )

(.)
(  )

(  )

(  )

(  )
(  )

(  )

(  )

(  )
(  )

(  )

Feature spaceInput space
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Example Transformation

Define the kernel function K (x,y) as 

Consider the following transformation

 The inner product can be computed by K
without going through the map (.)
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Kernel Trick

 The relationship between the kernel function K and 
the mapping (.) is

 This is known as the kernel trick

 In practice, we specify K, thereby specifying (.) 
indirectly, instead of choosing (.)

 Intuitively, K (x,y) represents our desired notion of 
similarity between data x and y and this is from our 
prior knowledge

 K (x,y) needs to satisfy a technical condition 
(Mercer condition) in order for (.) to exist
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Examples of Kernel Functions

 Polynomial kernel with degree d

Radial basis function kernel with width 

 Closely related to radial basis function neural networks

 Sigmoid with parameter  and 

 It does not satisfy the Mercer condition on all  and 

Research on different kernel functions in different 
applications is very active 
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Multi-class Classification

 SVM is basically a two-class classifier

One can change the QP formulation to allow 
multi-class classification

More commonly, the data set is divided into two 
parts “intelligently” in different ways and a 
separate SVM is trained for each way of division

Multi-class classification is done by combining 
the output of all the SVM classifiers

Majority rule

 Error correcting code

Directed acyclic graph
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Software

A list of SVM implementation can be found at 
http://www.kernel-machines.org/software.html

 Some implementation (such as LIBSVM) can 
handle multi-class classification

 SVMLight is among one of the earliest 
implementation of SVM

 Several Matlab toolboxes for SVM are also 
available
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Summary: Steps for Classification

 Prepare the pattern matrix

 Select the kernel function to use

 Select the parameter of the kernel function and 
the value of C
 You can use the values suggested by the SVM 
software, or you can set apart a validation set to 
determine the values of the parameter

 Execute the training algorithm and obtain the i

Unseen data can be classified using the i and 
the support vectors
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Strengths and Weaknesses of SVM

 Strengths

 Training is relatively easy 

 No local optimal, unlike in neural networks

 It scales relatively well to high dimensional data

 Tradeoff between classifier complexity and error can 
be controlled explicitly

Non-traditional data like strings and trees can be used 
as input to SVM, instead of feature vectors

Weaknesses

Need a “good” kernel function
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Other Types of Kernel Methods

A lesson learnt in SVM: a linear algorithm in the 
feature space is equivalent to a non-linear 
algorithm in the input space

Classic linear algorithms can be generalized to 
its non-linear version by going to the feature 
space

 Kernel principal component analysis, kernel 
independent component analysis, kernel canonical 
correlation analysis, kernel k-means, 1-class SVM are 
some examples
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Conclusion

 SVM is a useful alternative to neural networks

 Two key concepts of SVM: maximize the margin 
and the kernel trick

Many active research is taking place on areas 
related to SVM

Many SVM implementations are available on the 
web for you to try on your data set!



04/21/10 28

Resources

 http://www.kernel-machines.org/

 http://www.support-vector.net/

 http://www.support-vector.net/icml-tutorial.pdf

 http://www.kernel-
machines.org/papers/tutorial-nips.ps.gz

 http://www.clopinet.com/isabelle/Projects/SVM/
applist.html

http://www.kernel-machines.org/
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http://www.support-vector.net/icml-tutorial.pdf
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http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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KERNEL METHODS
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History

 ANOVA kernels were first suggested by Burges and 
Vapnik (1995) (under the name Gabor kernels).

 Schölkopf, Smola and Müller (1996) used kernel functions 
to perform principal component analysis.

 Schölkopf (1997) observed that any algorithm which can 
be formulated solely in terms of dot products can be 
made non-linear by carrying it out in feature spaces 
induced by Mercer kernels. Schölkopf, Smola and Müller 
(1997) presented their paper on kernel PCA.
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Overview

Kernel Methods: New class of pattern analysis 
algorithms
 can operate on very general types of data 

 can detect very general types of relations.

A powerful and principled way of detecting 
nonlinear relations using well-understood 
linear algorithms in an appropriate feature 
space.
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Kernel Trick

Kernel trick: Using a linear classifier
algorithm to solve a non-linear problem by 
mapping the original non-linear observations into 
a higher-dimensional space
 Linear classification in the new space equivalent to 
non-linear classification in the original space

Mercer’s theorem: Any continuous, symmetric, 
positive semi-definite( i.e eigenvalues are 
positive) kernel function K(x, y) can be expressed 
as a dot product in a high-dimensional space.
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Embed Data into A Feature Space
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MOTIVATION

 Linearly inseparable problems become linearly separable in higher 
dimension space
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Kernel function

 Kernel Function: A function that returns the 
inner product between the images of two 
inputs in some feature space.

 K(x1,x2)= <φ(x1),φ(x2)>

Choosing K is equivalent to choosing Φ (the 
embedding map)
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An example-Polinomial Kernel



04/21/10

Common Kernel Functions
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Stages in Kernel Methods

 Embed the data in a suitable feature space
 Kernel functions

Depend on the specific data type and domain knowledge

Use algorithm based on linear algebra, geometry 
and statistics to discover patterns in embedded 
data.
 The pattern analysis component

General purpose and robust
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Stages in Kernel Methods(cont)

 First  Create kernel matrix using kernel function

 Second  Apply pattern analysis algorithm



04/21/10

The kernel matrix

• Symmetric Positive Definite (positive eigenvalues)

• Contains all necessary information for the 

learning algorithm
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A Universal Kernel?

Universal kernel is not possible

 The kernels must be chosen for the problem.
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Kernel Types

 Polynomial Kernels

Gaussian Kernels

ANOVA Kernels

 Kernels from Graphs

 Kernels on Sets

 Kernels on Real Numbers

Randomized kernels

 Kernels for text

 Kernels for structured data: Strings, Trees, etc.
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Kernels
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Pattern Analysis Methods

 Supervised Learning

 Support Vector Machines

 Kernel Fisher Discriminant

Unsupervised Learning

 Kernel PCA

 Kernel k-means
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Applications

 Geostatistics
 Analysis of mining processes through mathematical models 

 Bioinformatics
 Application of information technology to the field of molecular 

biology

 Cheminformatics 
 Use of computer and informational techniques in the field of 

chemistry.

 Text categorization
 Assign an electronic document to one or more categories, based 

on its contents

 Handwriting Recognition
 Speech Recognition
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