METU Informatics Institute

Min720 Pattern Classification with Bio-Medical Applications

Homework 1

Due Date: 30.03.2011

1- The class-conditional densities for a 2-class, single feature problem is given by the Cauchy distribution.

$$
P\left(f \backslash c_{i}\right)=\frac{1}{\pi} \frac{1}{1+\left(f-a_{i}\right)^{2}}, i=1,2
$$

(a) Find the decision boundary and the decision regions when $\mathrm{P}\left(\mathrm{c}_{1}\right)=\mathrm{P}\left(\mathrm{c}_{2}\right)$. Show the probability of error geometrically (on sketch) when $a_{1}=3, a_{2}=5$. Write an expression for probability of error and find the result.
(b) Examine the behavior of the decision boundary with changing $\mathrm{P}\left(\mathrm{c}_{1}\right)$ and $\mathrm{P}\left(\mathrm{c}_{2}\right)$.

2- Consider a three-dimensional normal distribution $N\left(M_{1}, \sum_{1}\right)$ where

$$
\mathrm{M}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \quad \sum_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & 2 \\
0 & 2 & 5
\end{array}\right]
$$

a) Find the probability density at point $\mathrm{x}_{0}=(.5,0,1)^{\mathrm{t}}$
b) For the 2-category problem with $\mathrm{M}_{1}=\mathrm{M}_{2}$ and

$$
\sum_{2}=\left[\begin{array}{rrr}
5 & 0 & 0 \\
0 & 10 & 5 \\
0 & 5 & 10
\end{array}\right]
$$

Find the decision boundary. What is its shape?(linear, circle, parabola etc.)
3. Let x have 1-d uniform density

$$
\mathrm{p}(\mathrm{x} \mid \Theta) \sim \mathrm{U}(0, \Theta)=\left\{\begin{array}{l}
1 / \Theta \quad 0<=\mathrm{x}<= \\
0 \text { otherwise }
\end{array}\right.
$$

a) Suppose n samples $\mathrm{D}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ are drawn independently According to $\mathrm{p}(\mathrm{x} \mid \Theta)$. Show that the maximum likelihood estimate for Θ is $\max (\mathrm{D})$ - that is, the value of the maximum element of d .

