METU Informatics Institute

Min720 Pattern Classification with Bio-Medical Applications

1- The class-conditional densities for a 2-class, single feature problem is given by the Cauchy distribution.

$$P(f \setminus c_i) = \frac{1}{\pi} \frac{1}{1 + (f - a_i)^2}$$
, $i = 1, 2$

- (a) Find the decision boundary and the decision regions when $P(c_1)=P(c_2)$. Show the probability of error geometrically (on sketch) when $a_1=3$, $a_2=5$. Write an expression for probability of error and find the result.
- (b) Examine the behavior of the decision boundary with changing $P(c_1)$ and $P(c_2)$.
- **2** Consider a three-dimensional normal distribution $N(M_1, \sum_1)$ where

$$M_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \qquad \qquad \sum_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

- a) Find the probability density at point $x_0 = (.5, 0, 1)^t$
- b) For the 2-category problem with $M_1 = M_2$ and

$$\sum_{2} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 10 & 5 \\ 0 & 5 & 10 \end{bmatrix}$$

Find the decision boundary. What is its shape?(linear, circle, parabola etc.)

3. Let x have 1-d uniform density

$$p(x | \Theta) \sim U(0, \Theta) = \begin{cases} 1/\Theta & 0 \le x \le 0 \\ 0 & 0 \le x \le 0 \end{cases}$$

a) Suppose n samples $D=(x_1, x_2, ..., x_n)$ are drawn independently According to $p(x \mid \Theta)$. Show that the maximum likelihood estimate for Θ is max(D)- that is, the value of the maximum element of d.