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Statistical Approach to P.R

Dimension of the  feature space:

Set of different states of nature:

Categories:

find

set of possible actions (decisions): 

Here,  a decision might include a ‘reject option’ 

A Discriminant Function

in region ; decision rule : if

],...,,[ 21 dXXXX =

d

},...,,{ 21 cωωω

c

iR ϕ=∩ ji RR
d

i RuR =

},...,,{ 21 aααα

)()( XgXg ji ≥

iR

)(Xg i
ci ≤≤1

kα )()( XgXg jk >

1R

1g

2g
2R

3R

3g



A Pattern Classifier

So our aim now will be to define these functions

to minimize or optimize a criterion.
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Parametric Approach to Classification

• 'Bayes DecisionTheory'  is used for minimum-error/minimum risk 

pattern classifier design.

• Here, it is assumed that if a sample is drawn from a class  
it is a random variable represented with a multivariate 
probability density function.

‘Class- conditional density function’
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• We also know a-priori probability

(c is no. of classes)

• Then, we can talk about a decision rule that minimizes the 
probability of error.

• Suppose we have the observation 

• This observation is going to change a-priori assumption to a-
posteriori probability:

• which can be found by the Bayes Rule.
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• can be found by Total Probability Rule:

When      ‘s  are disjoint,

• Decision Rule: Choose the category with highest a-posteriori 
probability, calculated as above, using Bayes Rule.
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then, 1

Decision boundary:

or in general, decision boundaries are where:

between regions        and      
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• Single feature – decision boundary – point 

2 features – curve 

3 features – surface 

More than 3 – hypersurface

• Sometimes, it is easier to work with logarithms

• Since logarithmic function is a monotonically increasing function, 
log fn will give the same result.
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2 Category Case: 

Assign to           if                 

if 

But this is the same as:

if

By throwing away                   ‘s, we end up with:

if 

Which the same as:

Likelihood ratio
k
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Example: a single feature, 2 category problem with gaussian density
: Diagnosis of diabetes using sugar count X

state of being healthy
state of being sick (diabetes)

The decision rule:
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Assume now:                        

And we measured:

Assign the unknown sample:        to the correct category.

Find likelihood ratio:                                          for 

Compare with:

So assign:             to       .
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Example: A discrete problem

Consider a 2-feature, 3 category case

where:

And     ,                                         ,

Find the decision boundaries and regions:

Solution:
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Remember now that for the 2-class case:

if 

or

Likelihood ratio

Error probabilities and a simple proof of minimum error
Consider again a 2-class 1-d problem:

Let’s show that: if the decision boundary is (intersection point)
rather than any arbitrary point .
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Then          (probability of error) is minimum.  

It can very easily be seen that the          is minimum if               .                    
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Minimum Risk Classification

Risk associated with incorrect decision might be more important than 
the probability of error. 

So our decision criterion might be modified to minimize the average risk 
in making an incorrect decision.

We define a conditional risk (expected loss) for decision        when            
occurs as:

Where                   is defined as the conditional loss associated with 
decision          when the true class is         . It is assumed that      is 
known.   

The decision rule: decide on  if 
for all

The discriminant function here can be defined as:                                         
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• We can show that minimum – error decision is a special case 
of above rule where:

then,

so the rule is       if
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For the 2 – category case, minimum – risk classifier becomes:

if 

if

Otherwise, .

This is the same as likelihood rule if
and
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Discriminant Functions so far 

For Minimum Error: 

For Minimum Risk:

Where
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Bayes (Maximum Likelihood)Decision:

• Most general optimal solution

• Provides an upper limit(you cannot do better with other 
rule)

• Useful in comparing with other classifiers



Special Cases of Discriminant Functions

Multivariate Gaussian (Normal) Density                    : 

The general density form:

Here       in the feature vector of size .

M : d  element mean vector

: covariance matrix

(variance of feature     ) 

- symmetric                                                        

when       and         are statistically independent.

d

dxdΣ

jX

),( ΣMN

iX

T

dMXE ],...,,[)( 21 µµµ==
X

Σ

2

iσ=

])[(

)])([(

2

iiii

jjiiij

XE

XXE

µ

µµ

−=Σ

−−=Σ

∑

Σ
=

−
−−−

1
)()(2/1

2/12/)2(

1
)(

MXMX

d

T

eXP
π

iX0=Σij



- determinant of 

General shape: Hyper ellipsoids                                                                                                 

where    

is constant:

Mahalanobis                               

Distance

2 – d problem:                                             ,

If ,

(statistically independent features) then,

major axes are parallel to major ellipsoid axes
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if in addition

circular

in general, the equal density curves are hyper ellipsoids. Now

is used for since its ease in manipulation

is a quadratic function of       as will be shown.
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a scalar

Then,

On the decision boundary,
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Decision boundary function is hyperquadratic in general.

Example in 2d.

Then, above boundary becomes
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General form of hyper quadratic boundary IN 2-d.

The special cases of Gaussian:

Assume

Where        is the unit matrixIi
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(not a function of   X so can be removed)

Now assume

euclidian distance between X and Mi

Then,the decision boundary is linear !
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Decision

Rule: Assign the unknown sample to the closest mean’s category

unknown sample

d= Perpendicular bisector that will move towards the less probable 
category
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Minimum Distance Classifier

• Classify an unknown sample X to the category with closest mean !

• Optimum when gaussian densities with equal variance and equal a-
priori probability. 

Piecewise linear boundary in case of more than 2 categories.
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• Another special case: It can be shown that when (Covariance 
matrices are the same)

• Samples fall in clusters of equal size and shape

unknown sample

is called Mahalonobis Distance

is called Mahalonobis Distance
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Then, if 

The decision rule:

if (Mahalanobis Distance of unknown sample to       ) > 

(Mahalanobis Distance of unknown sample to      )

If

The boundary moves toward the less probable one.

iα

)()( ji PP ωω =

)()( ji PP ωω ≠

jM

iM



Binary Random Variables

• Discrete features: Features can take only discrete values. Integrals 
are replaced by summations.

• Binary Features: 0  or  1

• Assume binary features are statistically independent.

• Where           is binary
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Binary Random Variables

Example: Bit – matrix for machine – printed characters

a pixel

Here, each pixel may be taken as a feature   

For above problem, we have 

is the probability that              for letter A,B,…

iX

1=iX

1001010 =×=d

1

0

ip

iX



defined for                        undefined elsewhere:

• If statistical independence of features is assumed.

• Consider the 2 category problem; assume:
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then, the decision boundary is:

So if

The decision boundary is linear in X.

a weighted sum of the inputs

where:

and
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