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PART 2: Statistical Pattern
Classification: Optimal Classification
with Bayes Rule



Statistical Approach to P.R

X=[X,X,,..X,]

Dimension of the feature space:d

Set of different states of nature: {»,®,,...®,}
Categories: ¢

findR, RNR, =¢ uR =R"

set of possible actions (decisions): {a,,,.,...,2,}
Here, a decision might include a 'reject option’
A Discriminant Function g.(X)=g,(X) g&(X) l=sisc

in region R ;decisionrule: if g.(X)>g;(X)



A Pattern Classifier

g1(X)\
X — g,(X) > Max
gc(X)/ alz

So our aim now will be to define these functions &1>825---- 8.
to minimize or optimize a criterion.



Parametric Approach to Classification

'Bayes DecisionTheory" is used for minimum-error/minimum risk
pattern classifier design.

Here, it is assumed that if a sample X is drawn from a class @,
it is a random variable represented with a multivariate
probability density function.

'Class- conditional density function’

P(X‘a)l.)



We also know a-priori probability P(w,)

1<i<c (cis no. of classes)

Then, we can talk about a decision rule that minimizes the
probability of error.

Suppose we have the observation X

This observation is going o change a-priori assumption to a-
posteriori probability:

P(w|X)
which can be found by the Bayes Rule.




P(w,

X)=P(w, X))/ P(X)
P(X|o,).P(w)

- P(X)
* P(X)can be found by Total Probability Rule:
When @,'s are disjoint,

P30 U

W, @,

©)-P(a,)

P(X)= Z P(X

Decision Rule: Choose the category with highest a-posteriori
probability, calculated as above, using Bayes Rule.



then, gi(X):P(a)i

X) 1

Decision boundary: g1~ &>

&1 > 8& g, > &

R R,

or in general, decision boundaries are where:

g:(X)=g;(X)
between regions K, and R,



« Single feature - decision boundary - point

2 features - curve
3 features - surface
More than 3 - hypersurface
gi(X) — P(X a)i)'P(a)i)
. P(X|o,).P(e)
X) =
gi(X) POX)

- Sometimes, it is easier to work with logarithms
g,(X) = log[ P(X|w,).P(w,)]

g,(X)=log P(X

w;)+log P(w,)

 Since logarithmic function is a monotonically increasing function,
log fn will give the same result.



2 Category Case: G,

Assignto ¢ if () P(a)l‘X)>P(a)2 X)
C, if () P(a)1‘X)<P(a)2 X)

But this is the same as:

C, if P(X‘@)-P(@) S P(X‘w2)~P(0)2)

P(X) P(X)

By throwing away P(X) s, we end up with:

c, if P(X|w,).P(@,) >P(X‘a)2)-P(a)2)
Which the same as: > P(X‘a)z) =k
Likelihood ratio P(X|w,)




Example: a single feature, 2 category problem with gaussian density
: Diagnosis of diabetes using sugar count X
€y state of being healthy P(e)=0.7
C, state of being sick (diabetes)  P(c,)=0.3

P(X‘C]) _ I o (Xmm)? 20/ o (Xm)? 120

P(X)

The decision rule:

¢, if  P(X|e,).P(c)> P(X]c,).Pde,)
0.7P(X|c;) > 0.3P(X]c,)



ASSUI’\'\e Now. n, = 10 m2 = 20 al = 62 = 2
And we measured: X =17

Assigh the unknown sample: X to the correct category.

e—(X—10)2/8
Find likelihood ratio: — for X =17
—(X-20)%/8
e
= =0.006
Compare with: Ple,) = 0.3 =0.43>0.006
P(c) 0.7

So assign: Xo .G,



Example: A discrete problem

Consider a 2-feature, 3 category case

= I for ai<X1<bi

where:  P(X,X,|lc))=9 (a,-b)’ a; < X, <b,

=0 other wise

And P(c,)=0.4, P(c,)=0.4 P(c,)=0.2
Find the decision boundaries and regions: a, =-1 b, =
t R, a,=0.5 b,=35
1x0.2=0.2 a, = b, =
Solution: ol N
RZ
1 lx0.4=%
9 9
ix(0.4)=0.1
R
| %y// —
7 3
—1




Remember now that for the 2-class case:
€, P(X‘cl).P(c1)>P(X‘c2).P(02)
or P(X‘CZ) . k

Likelihood r'Cl‘r</v P(X‘Cl)

Error probabilities and a simple proof of minimum error
Consider again a 2-class 1-d problem:

P(X|c,).P(c))

P(X‘Cz)-P(Cz)

< Rl > d: RZ >

Let's show that: if the decision boundary is d (intersection point)
rather than any arbitrary point d’.



Then P(E) (probability of error) is minimum.
P(E)=P(X €R,,c,)+P(X €R,,c,)
= P(X € R,|¢)).P(c;)+ P(X € R|c,).P(c,)

=[], PXleax 1P+, P(X|e)dX)-P(e,)

= |, P(X|e).P(c))dX + [ P(Xle,).P(c,)dX

e

dl

It can very easily be seen that the P(E) is minimum if d'=d



Minimum Risk Classification

Risk associated with incorrect decision might be more important than
the probability of error.

So our decision criterion might be modified to minimize the average risk
in making an incorrect decision.

We define a conditional risk (expected loss) for decision &, when X
occurs as:

RI(X)= Z Aa|w)).P(w,|X)

Where A(a,|®;) is defined as the conditional loss associated with
decision «; when the true classis @, .Itisassumed that 4 is
known.

The decision rule: decide on ¢; if R'(X)<R’(X)
forall 1<j<c i# ]

The discriminant function here can be defined as: g,(X) =—R'(X)
4



«  We can show that minimum - error decision is a special case
of above rule where:

(0):0

1 l

Ma|lw;) =1

then,  Ri(x)=Y P(w,|X)

J#i

=1-P(o,

X)

sotheruleis @, if 1- P(w,|X)<1-P(w,|X)

= P(w,

X)>R(w,|X)



For the 2 - category case, minimum - risk classifier becomes:

R (X)= ﬂ’llp(wl‘X) ""LzP(wz‘X)
R™(X)= lzzp(wz‘X) T lzlp(wl‘X)

a, if lep(wl‘X)"‘ﬁlzP(wz‘X) > Zzzp(a)z‘X)*'lmP(wl‘X)

= (4 - /121)-1)(601‘)() > (A = 4y )P(C‘)z‘X)

= (4, - 2*21)-P(X|0)1)-P(0)1) > (A — Ay, )-P(X‘a)z)P(wz)

a,if P(X‘a)l) > (2“12 _2*22) P(wz)
P(X‘a)z) (/121_2'11).})((01)

Otherwise, &,

This is the same as likelihood rule if 4» =4, =0
and 4, =4, =1



Discriminant Functions so far

For Minimum Error:  + P(@,|X)
+P(X|\w,).P(w,)
+log P(X‘a)l.) +log P(w,)

For Minimum Risk: —R'(X)

Where R'(X)= Z Aa|w).P(o]X)



Bayes (Maximum Likelihood)Decision:

Most general optimal solution

Provides an upper limit(you cannot do better with other
rule)

Useful in comparing with other classifiers



Special Cases of Discriminant Functions

Multivariate Gaussian (Normal) Density N(M .X):

1 12X -M)" Y T (x-m)
e
(27[)61/2 ‘2‘1/2

Here X in the feature vector of size .d
M :d element mean vector E(X)=M =[p, ity,...., 11,1

The general density form: P(X) =

. covariance matrix
z dxd m

Zij = E[(Xi_:ui)(Xj _;uj)]
Zii — E[(Xl _:ui)z]

(ﬂvaﬂpznce of feature ) X

l

2 symmetric
2, =0 when X; and X ; are statistically independent.



‘Z} determinant of >

General shape: il +~—Hyper=ellipsoids
where 1,
(X =M)" (X = M)
IS constant:
7 Mahalkgnobis
Distance X,
o) ol
H 2, 022
2 - d problem: :

X, X R
1° 2 X2

it 2,=0, X,=0 I

(statistically independent features) then, \\/

major axes are parallel to major ellipsoid axes

><V
—_




4

@
P

H,

if in addition o°=0,° I

in general, the equal density curves are hyper ellipsoids. Now

g,(X)=log, P(X

a)i) + loge P(a)l)

is used for N(M,,X.) since its ease in manipulation

g (X)=-(U/2).(X -M)" > (X -M,)

—(1/2)loglx.|+log P(w,)

l

g:(X) is a quadratic function of X as will be shown.



g (X)=-1/2X"> "X -1/2M> "M,
+1/2X7Y M +1/2M] Y X
—1/2-108‘21-_1‘ +log P(w,)

W, =-1/2""
4 :MiTZi_l

ascalar W, =-1/2.M[%'M,-1/2.logl% |+ log P(,)
Then,

g(X)=X'"WX+V.X+W,
On the decision boundary,

g,(X)=g;(X)
X'WX-X'WX+VX-VX+W,-W, =0



T
XT(W,~ W)X+, ~V)X+W,~W,)=0

X'WX+VX+W,=0
Decision boundary function is hyperquadratic in general.

Example in 2d. _ _

Q) Q)
1 12
W =
W), Wy, |
V= [Vl Vz]

Then, above bounde{X;/ FeLXmes Xy ]



W, Wy || X X
] + [Vl Vz]
W, Wy || X X,

[xl X,

+W,

0

a)nxl2 + 20, x,x, + w22x22 +vx, +v,x, + W, =0
General form of hyper quadratic boundary IN 2-d.

The special cases of Gaussian:

Assume
Where is the und¥; n?aﬁF'fB(

] zi :sz

_0_2

0

3, =
0
0

q

oS O -
oS O

o
q

oS O O




gi(X): 2(1,2 - g I +10g P(a)i)
gl.(X):—+ log P(w,)
° ' h be,removed)

(not a functigp of X so ca

Now assume
P(@,) = P(w))

—d*(X,M.)

g, (X)=- J
euclidian distance be%ween X and Mi

Then,the decision boundary is linear !



Decision
Rule: Assign the unknown sample to the closest mean's category

unknown sample

N

d= Perpendicular bisector that will mdvEddfatdéthe less probable
category



Minimum Distance Classifier

* Classify an unknown sample X to the category with closest mean |

« Optimum when gaussian densities with equal variance and equal a-
priori probability.

Piecewise linear boundary in case of more than 2 categories.



* Another special case: It can be shown that when (Covariance
matrices are the same)

* Samples fall in clusters of equglisﬁe%‘nd shape

!

P(@,) = P(@))

is called Mahalonobis Distance
gi(X) :—%(X—Ml.)TZ_I(X—Ml.)+logP(a)l.)

is cal I?&M%D[%Q%QWSXDEE\%SE’

2



Then, if P(w,) = P(o))
The decision rule:

o 1T (Mahalanobis Distance of unknown sample to M, )>

(Mahalanobis Distance of unknown sample to Iy )

J

I ) Po)
The bouhdary moves toward the less probable one.



Binary Random Variables

Discrete features: Features can take only discrete values. Integrals
are replaced by summations.

Binary Features: 0 or 1 =(X, =1@)

q; =(X, = l‘a)z)
—n | Pi
=p, P(X |o)
0 1 X,
Assume binary features are statistically independent.
Where is binary
X,

1

xX=[x,x,.,..x,1[



Binary Random Variables

Example: Bit - matrix for machine - printed characters

]
]
'-'-'-'-'-'-'-'-'-'-'-E::::EEEE:

P e

T
5555-'-'-'-'-'-'-'-'-'-'-'-' oSty el
..l.l.

Here, each pixel may be taken as a featureX
For above problem, we have d=10x10=100

is the probability that for letter A B,..
P X =1



P (xi) — (pz')Xi { — P )I_Xi

defined for X, =0,1 undefined elsewhere:
d d
P (X) :HP (xi) :H(pi )xi (l_pi)l_xi
i=1 i=1
d
g.(X)=logP(X|w,)+1ogP(w,))= D xlogp,+ ) (1-x)logl—p,)+logP(w,)
i=1
« If statistical independence of features is assumed.

« Consider the 2 category problem; assume:

P =(x= 1‘”1)
q; =(x= 1‘0)2)



then, the decision boundary is:
D x.logp,+) (1-x)logl—p)—D xlogg - > (1-x,)logl—g,)+
logP(a3)—logP(ar) =0
So if
Zx 10g—+2(l x)log +10gp(“’1)
>0 category 1

else 2

The d&&islonWouhdafp is linear in X.

a weighted sum of the inputs
where:

and

— b (1-g;)
W, =I5 Wy = In2+In 520

P(w,)




