# PART 2: Statistical Pattern Classification: Optimal Classification with Bayes Rule 

## Statistical Approach to P.R

 Here, a decision might include a 'reject option'
A Discriminant Function $g_{i}(X) \geq g_{j}(X) \quad g_{i}(X) \quad 1 \leq i \leq c$
in region $R_{i}$; decision rule: $\alpha_{k}$ if $g_{k}(X)>g_{j}(X)$

## A Pattern Classifier



So our aim now will be to define these functions $g_{1}, g_{2}, \ldots, g_{c}$ to minimize or optimize a criterion.

## Parametric Approach to Classification

- 'Bayes DecisionTheory' is used for minimum-error/minimum risk pattern classifier design.
- Here, it is assumed that if a sample $X$ is drawn from a class $\omega_{i}$ it is a random variable represented with a multivariate probability density function.
'Class- conditional density function'

$$
P\left(X \mid \omega_{i}\right)
$$

- We also know a-priori probability $P\left(\omega_{i}\right)$

$$
1 \leq i \leq c \quad(c \text { is no. of classes })
$$

- Then, we can talk about a decision rule that minimizes the probability of error.
- Suppose we have the observation X
- This observation is going to change a-priori assumption to aposteriori probability:

$$
P\left(\omega_{i} \mid X\right)
$$

- which can be found by the Bayes Rule.

$$
\begin{aligned}
P\left(\omega_{i} \mid X\right) & =P\left(\omega_{i}, X\right) / P(X) \\
& =\frac{P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right)}{P(X)}
\end{aligned}
$$

- $P(X)$ can be found by Total Probability Rule:

When $\omega_{i}$ 's are disjoint,

$$
\begin{aligned}
& P(X)=\sum_{i=1}^{c} P\left(\omega_{i}, X\right) \\
& P(X)=\sum_{i=1}^{c} P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right)
\end{aligned}
$$



- Decision Rule: Choose the category with highest a-posteriori probability, calculated as above, using Bayes Rule.
then, $g_{i}(X)=P\left(\omega_{i} \mid X\right) \quad \underline{1}$
Decision boundary:

or in general, decision boundaries are where:

$$
g_{i}(X)=g_{j}(X)
$$

between regions $R_{i}$ and $R_{j}$

- Single feature - decision boundary - point

2 features -
3 features More than 3 -
curve
surface
hypersurface

$$
\begin{aligned}
& g_{i}(X)=P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right) \\
& g i(X)=\frac{P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right)}{P(X)}
\end{aligned}
$$

- Sometimes, it is easier to work with logarithms

$$
\begin{aligned}
g_{i}(X) & =\log \left[P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right)\right] \\
g_{i}(X) & =\log P\left(X \mid \omega_{i}\right)+\log P\left(\omega_{i}\right)
\end{aligned}
$$

- Since logarithmic function is a monotonically increasing function, $\log f n$ will give the same result.


## 2 Category Case: $\quad c_{1}, c_{2}$

Assign to $c_{1}$ if $\quad\left(\alpha_{1}\right) \quad P\left(\omega_{1} \mid X\right)>P\left(\omega_{2} \mid X\right)$

$$
c_{2} \quad \text { if } \quad\left(\alpha_{2}\right) \quad P\left(\omega_{1} \mid X\right)<P\left(\omega_{2} \mid X\right)
$$

But this is the same as:

$$
c_{1} \quad \text { if } \quad \frac{P\left(X \mid \omega_{1}\right) \cdot P\left(\omega_{1}\right)}{P(X)}>\frac{P\left(X \mid \omega_{2}\right) \cdot P\left(\omega_{2}\right)}{P(X)}
$$

By throwing away $P(X)$ 's, we end up with:

$$
c_{1} \quad \text { if } \quad P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{1}\right)>P\left(X \mid \omega_{2}\right) \cdot P\left(\omega_{2}\right)
$$

$\begin{aligned} & \text { Which the same as: } \\ & \text { Likelihood ratio }\end{aligned} \frac{P\left(X \mid \omega_{1}\right)}{P\left(X \mid \omega_{2}\right)}>\frac{P\left(X \mid \omega_{2}\right)}{P\left(X \mid \omega_{1}\right)}=k$

Example: a single feature, 2 category problem with gaussian density
: Diagnosis of diabetes using sugar count $X$

## $c_{1}$ state of being healthy

$$
P\left(c_{1}\right)=0.7
$$

$c_{2}$ state of being sick (diabetes) $\quad P\left(c_{2}\right)=0.3$

| $P\left(X \mid c_{1}\right)=\frac{1}{\sqrt{2 \pi \partial_{1}{ }^{2}}} . e^{-\left(X-m_{1}\right)^{2} / 2 \partial_{1}{ }^{2}}$ | $P\left(X \mid c_{2}\right)=\frac{1}{\sqrt{2 \pi \partial_{2}{ }^{2}}} . e^{-\left(X-m_{2}\right)^{2} / 2 \partial_{2}{ }^{2}}$ |
| :--- | :--- |

The decision rule:


$$
\begin{aligned}
& c_{1} \text { if } P\left(X \mid c_{1}\right) \cdot P\left(c_{1}\right)>P\left(X \mid c_{2}\right) \cdot P\left(c_{2}\right) \\
& \quad 0.7 P\left(X \mid c_{1}\right)>0.3 P\left(X \mid c_{2}\right)
\end{aligned}
$$

Assume now: $m_{1}=10 \quad m_{2}=20 \quad \partial_{1}=\partial_{2}=2$

And we measured: $X=17$

Assign the unknown sample: $X$ to the correct category.
Find likelihood ratio: $=\frac{e^{-(X-10)^{2} / 8}}{e^{-(X-20)^{2} / 8}} \quad$ for $\quad X=17$

$$
=e^{-4.9}=0.006
$$

Compare with: $\frac{P\left(c_{2}\right)}{P\left(c_{1}\right)}=\frac{0.3}{0.7}=0.43>0.006$
So assign: $\quad$ fo $^{\circ} \quad . c_{2}$

## Example: A discrete problem

Consider a 2-feature, 3 category case
where: $\quad P\left(X_{1}, X_{2} \mid c_{i}\right)=\left\{\begin{array}{lll}=\frac{1}{\left(a_{i}-b_{i}\right)^{2}} & \text { for } & a_{i}<X_{1}<b_{i} \\ a_{i}<X_{2}<b_{i} \\ =0 & \text { other } & \text { wise }\end{array}\right.$
And
$P\left(c_{1}\right)=0.4$,
$P\left(c_{2}\right)=0.4$,
$P\left(c_{3}\right)=0.2$

Find the decision boundaries and regions:

$$
\begin{array}{ll}
a_{1}=-1 & b_{1}=1 \\
a_{2}=0.5 & b_{2}=3.5 \\
a_{3}=3 & b_{3}=4
\end{array}
$$

Solution:


Remember now that for the 2-class case:


## Error probabilities and a simple proof of minimum error

Consider again a 2-class 1-d problem:


Let's show that: if the decision boundary is $d$ (intersection point) rather than any arbitrary point $d^{\prime}$.

Then $P(E)$ (probability of error) is minimum.

$$
\begin{aligned}
& P(E)=P\left(X \in R_{2}, c_{1}\right)+P\left(X \in R_{1}, c_{2}\right) \\
&=P\left(X \in R_{2} \mid c_{1}\right) \cdot P\left(c_{1}\right)+P\left(X \in R_{1} \mid c_{2}\right) \cdot P\left(c_{2}\right) \\
&=\left[\int_{R_{2}} P\left(X \mid c_{1}\right) d X\right] \cdot P\left(c_{1}\right)+\left[\int_{R_{1}} P\left(X \mid c_{2}\right) d X\right] \cdot P\left(c_{2}\right) \\
&=\int_{R_{2}} P\left(X \mid c_{1}\right) \cdot P\left(c_{1}\right) d X+\int_{R_{1}} P\left(X \mid c_{2}\right) \cdot P\left(c_{2}\right) d X \\
&
\end{aligned}
$$

It can very easily be seen that the $P(E)$ is minimum if $d^{\prime}=d$

## Minimum Risk Classification

Risk associated with incorrect decision might be more important than the probability of error.

So our decision criterion might be modified to minimize the average risk in making an incorrect decision.

We define a conditional risk (expected loss) for decision $\alpha_{i}$ when $X$ occurs as:

$$
R^{i}(X)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid X\right)
$$

Where $\lambda\left(\alpha_{i} \mid \omega_{j}\right)$ is defined as the conditional loss associated with decision $\alpha_{i}$ when the true class is $\omega_{j}$. It is assumed that $\lambda$ is known.

The decision rule: decide on $c_{i}$ if $R^{i}(X)<R^{j}(X)$

$$
\text { for all } 1 \leq j \leq c \quad i \neq j
$$

The discriminant function here can be defined as: $g_{i}(X)=-R^{i}(X)$

- We can show that minimum - error decision is a special case of above rule where:

$$
\begin{aligned}
& \lambda\left(\alpha_{i} \mid \omega_{i}\right)=0 \\
& \lambda\left(\alpha_{i} \mid \omega_{j}\right)=1
\end{aligned}
$$

then,

$$
\begin{aligned}
R^{i}(X) & =\sum_{j \neq i} P\left(\omega_{j} \mid X\right) \\
& =1-P\left(\omega_{i} \mid X\right)
\end{aligned}
$$

so the rule is $\alpha_{i}$ if $1-P\left(\omega_{i} \mid X\right)<1-P\left(\omega_{j} \mid X\right)$

$$
\equiv P\left(\omega_{i} \mid X\right)>R\left(\omega_{j} \mid X\right)
$$

For the 2 - category case, minimum - risk classifier becomes:

$$
\begin{aligned}
& R^{\alpha_{1}}(X)=\lambda_{11} P\left(\omega_{1} \mid X\right)+\lambda_{12} P\left(\omega_{2} \mid X\right) \\
& R^{\alpha_{2}}(X)=\lambda_{22} P\left(\omega_{2} \mid X\right)+\lambda_{21} P\left(\omega_{1} \mid X\right) \\
\alpha_{1} \text { if } \quad & \lambda_{11} P\left(\omega_{1} \mid X\right)+\lambda_{12} P\left(\omega_{2} \mid X\right)>\lambda_{22} P\left(\omega_{2} \mid X\right)+\lambda_{21} P\left(\omega_{1} \mid X\right) \\
\Rightarrow & \left(\lambda_{11}-\lambda_{21}\right) \cdot P\left(\omega_{1} \mid X\right)>\left(\lambda_{12}-\lambda_{22}\right) \cdot P\left(\omega_{2} \mid X\right) \\
\Rightarrow & \left(\lambda_{11}-\lambda_{21}\right) \cdot P\left(X \mid \omega_{1}\right) \cdot P\left(\omega_{1}\right)>\left(\lambda_{12}-\lambda_{22}\right) \cdot P\left(X \mid \omega_{2}\right) P\left(\omega_{2}\right) \\
\alpha_{1} \text { if } \quad & \frac{P\left(X \mid \omega_{1}\right)}{P\left(X \mid \omega_{2}\right)}>\frac{\left(\lambda_{12}-\lambda_{22}\right)}{\left(\lambda_{21}-\lambda_{11}\right)} \cdot \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)}
\end{aligned}
$$

Otherwise, $\alpha_{2}$.
This is the same as likelihood rule if $\lambda_{22}=\lambda_{11}=0$ and $\lambda_{12}=\lambda_{21}=1$

## Discriminant Functions so far

For Minimum Error: $+P\left(\omega_{i} \mid X\right)$

$$
\begin{aligned}
& +P\left(X \mid \omega_{i}\right) \cdot P\left(\omega_{i}\right) \\
& +\log P\left(X \mid \omega_{i}\right)+\log P\left(\omega_{i}\right)
\end{aligned}
$$

For Minimum Risk: $\quad-R^{i}(X)$

Where

$$
R^{i}(X)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid X\right)
$$

## Bayes (Maximum Likelihood)Decision:

- Most general optimal solution
- Provides an upper limit(you cannot do better with other rule)
- Useful in comparing with other classifiers


## Special Cases of Discriminant Functions

## Multivariate Gaussian (Normal) Density $N(M, \Sigma)$ :

The general density form: $\quad P(X)=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} e^{-1 / 2(X-M)^{r} \sum^{-1}(X-M)}$
Here $X$ in the feature vector of size .d $M: d$ element mean vector $E(X)=M=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right]^{T}$
$\Sigma_{d x \dot{d}}$ covariance matrix

$$
\begin{aligned}
& \Sigma_{i j}=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right] \\
& \Sigma_{i i}=E\left[\left(X_{i}-\mu_{i}\right)^{2}\right]
\end{aligned}
$$

$$
\text { (ซaøiance of feature ) } \quad X_{i}
$$

$\Sigma$-symmetric
$\Sigma_{i j}=0$ when $X_{i}$ and $X_{j}$ are statistically independent.

## $|\Sigma|$ determinant of $\quad \Sigma$

General shape: where

Distance


$$
M=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \Sigma_{12} \\
\Sigma_{21} & \sigma_{2}^{2}
\end{array}\right]
$$

2-d problem:

$$
X_{1}, \quad X_{2}
$$

If $\quad \Sigma_{12}=0, \quad \Sigma_{21}=0$
(statistically independent features) then,
major axes are parallel to major ellipsoid axes

if in addition $\quad \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$

in general, the equal density curves are hyper ellipsoids. Now

$$
g_{i}(X)=\log _{e} P\left(X \mid \omega_{i}\right)+\log _{e} P\left(\omega_{i}\right)
$$

is used for $N\left(M_{i}, \Sigma_{i}\right)$ since its ease in manipulation

$$
\begin{aligned}
g_{i}(X) & =-(1 / 2) \cdot\left(X-M_{i}\right)^{T} \sum_{i}^{-1}\left(X-M_{i}\right) \\
& -(1 / 2) \log \left|\Sigma_{i}\right|+\log P\left(\omega_{i}\right)
\end{aligned}
$$

$g_{i}(X)$ is a quadratic function of $X$ as will be shown.

$$
\begin{aligned}
g_{i}(X) & =-1 / 2 \cdot X^{T} \sum_{i}^{-1} X-1 / 2 \cdot M_{i}^{T} \sum_{i}^{-1} M_{i} \\
& +1 / 2 \cdot X^{T} \sum_{i}^{-1} M_{i}+1 / 2 M_{i}^{T} \sum_{i}^{-1} X \\
& -1 / 2 \cdot \log \left|\sum_{i}^{-1}\right|+\log P\left(\omega_{i}\right) \\
W_{i} & =-1 / 2 \cdot \sum_{i}^{-1} \\
V_{i} & =M_{i}^{T} \sum_{i}^{-1}
\end{aligned}
$$

a scalar $W_{i o}=-1 / 2 \cdot M_{i}^{T} \Sigma_{i}^{-1} M_{i}-1 / 2 \cdot \log \left|\Sigma_{i}\right|+\log P\left(\omega_{i}\right)$
Then,

$$
g_{i}(X)=X^{T} W_{i} X+V_{i} X+W_{i o}
$$

On the decision boundary,

$$
\begin{aligned}
& g_{i}(X)=g_{j}(X) \\
& X^{T} W_{i} X-X^{T} W_{j} X+V_{i} X-V_{j} X+W_{i o}-W_{j o}=0
\end{aligned}
$$

$$
\begin{aligned}
& X^{T}\left(W_{i}-W_{j}\right) X+\left(V_{i}-V_{j}\right) X+\left(W_{i o}-W_{j o}\right)=0 \\
& X^{T} W X+V X+W_{0}=0
\end{aligned}
$$

Decision boundary function is hyperquadratic in general.
Example in 2d.

$$
\begin{aligned}
& W=\left[\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right] \\
& V=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]
\end{aligned}
$$

Then, above boundary be $\left[\begin{array}{ll}d_{m} \text { mes } & \left.x_{2}\right]\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+W_{0}=0} \\
& \omega_{11} x_{1}^{2}+2 \omega_{12} x_{1} x_{2}+\omega_{22} x_{2}^{2}+v_{1} x_{1}+v_{2} x_{2}+W_{0}=0
\end{aligned}
$$

General form of hyper quadratic boundary IN 2-d.
The special cases of Gaussian:
Assume


$$
\begin{aligned}
\left|\Sigma_{i}\right| & =\sigma^{2 d} \\
\Sigma_{i} & =\left[\begin{array}{cccc}
\sigma^{2} & 0 & 0 & 0 \\
0 & \sigma^{2} & 0 & 0 \\
0 & 0 & . . & 0 \\
0 & 0 & 0 & \sigma^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\Sigma_{i}^{-1}=\frac{1}{\sigma^{2}} I \\
\left.g_{i}(X)=-\frac{1}{2 \sigma^{2}}\left(X-M_{i}\right)^{T} \cdot\left(X-M_{i}\right)-\frac{1}{2} \log \sigma^{2 d}\right) \\
g_{i}(X)=-\frac{1}{2 \sigma^{2}}\left\|X, M_{i}\right\|^{2}+\log P\left(\omega_{i}\right) \\
\begin{array}{l}
\text { (not a functie } T_{i} \text { of }
\end{array} \times \text { so can beremoved) }
\end{gathered}
$$

Now assume

$$
\begin{gathered}
P\left(\omega_{i}\right)=P\left(\omega_{j}\right) \\
g_{i}(X)=-\frac{1}{2^{2}}\left\|X, M_{i}\right\|^{2}=-d^{2}\left(X, M_{i}\right) \\
\text { euclidian distance between } X \text { and } M i
\end{gathered}
$$

Then, the decision boundary is linear !

## Decision

Rule: Assign the unknown sample to the closest mean's category

$d=$ Perpendicular bisector that will movequaward ${ }^{2} s^{\circ}+$ b) e less probable category

## Minimum Distance Classifier

- Classify an unknown sample $X$ to the category with closest mean !
- Optimum when gaussian densities with equal variance and equal apriori probability.


Piecewise linear boundary in case of more than 2 categories.

- Another special case: It can be shown that when (Covariance matrices are the same)
- Samples fall in clusters of equalisizize $\sum_{\text {and }}$ shape

is called Mahalonobis Distance $g_{i}(X)=-\frac{1}{2}\left(X-M_{i}\right)^{T} \Sigma^{-1}\left(X-M_{i}\right)+\log P\left(\omega_{i}\right)$


Then, if $P\left(\omega_{i}\right)=P\left(\omega_{j}\right)$
The decision rule:
$\alpha_{i}$ if (Mahalanobis Distance of unknown sample to $M_{i}$ ) >
(Mahalanobis Distance of unknown sample to $M_{j}$ )
If
If $P\left(\omega_{i}\right) \neq P\left(\omega_{j}\right)$
The boundary moves toward the less probable one.

## Binary Random Variables

- Discrete features: Features can take only discrete values. Integrals are replaced by summations.
- Binary Features: 0 or $1 \quad p_{i}=\left(X_{i}=1 \mid \omega_{1}\right)$

$$
q_{i}=\left(X_{i}=1 \mid \omega_{2}\right)
$$



- Assume binary features are statistically independent.
- Where is binary
$X_{i}$
$X=\left[X_{1}, X_{2}, \ldots, X_{d}\right]^{T}$


## Binary Random Variables

## Example: Bit-matrix for machine-printed characters



Here, each pixel may be taken as a feature $X_{i}$
For above problem, we have

$$
d=10 \times 10=100
$$

is the probability that for letter $A, B, \ldots$
$p_{i}$

$$
X_{i}=1
$$

$$
P\left(x_{i}\right)=\left(p_{i}\right)^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}
$$

defined for $x_{i}=0,1 \quad$ undefined elsewhere:

$$
\begin{aligned}
& P(X)=\prod_{i=1}^{d} P\left(x_{i}\right)=\prod_{i=1}^{d}\left(p_{i}\right)^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}} \\
& g_{k}(X)=\log \left(P\left(X \mid w_{k}\right)+\log P\left(w_{k}\right)\right)=\sum_{i=1}^{d} x_{i} \log p_{i}+\sum\left(1-x_{i}\right) \log \left(1-p_{i}\right)+\log P\left(w_{k}\right)
\end{aligned}
$$

- If statistical independence of features is assumed.
- Consider the 2 category problem; assume:

$$
\begin{aligned}
& p_{i}=\left(x=1 \mid \omega_{1}\right) \\
& q_{i}=\left(x=1 \mid \omega_{2}\right)
\end{aligned}
$$

then, the decision boundary is:

$$
\begin{aligned}
& \sum x_{i} \log p_{i}+\sum\left(1-x_{i}\right) \log \left(1-p_{i}\right)-\sum x_{i} \log q_{i}-\sum\left(1-x_{i}\right) \log \left(1-q_{i}\right)+ \\
& \log P\left(\omega_{1}\right)-\log P\left(\omega_{2}\right)=0
\end{aligned}
$$

So if

$$
\sum x_{i} \log \frac{p_{i}}{q_{i}}+\sum\left(1-x_{i}\right) \log \frac{1-p_{i}}{1-q_{i}}+\log \frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}
$$

$$
\begin{gathered}
>0 \text { category } 1 \\
\text { else } 2
\end{gathered}
$$

 a weighted sum of the inputs
where:

$$
\begin{aligned}
& \text { and } \\
& W_{i}=\ln \frac{P_{i}\left(1-q_{i}\right)}{q_{i}\left(1-p_{i}\right)}
\end{aligned} W_{0}=\sum \ln \frac{1-p_{i}}{1-q_{i}}+\ln \frac{P\left(\omega_{1}\right)}{P\left(\omega_{2}\right)}
$$

