
Part 3: Estimation of Parameters



Estimation of Parameters

• Most of the time, we have random samples but not the densities given.

• If the parametric form of the densities are given or assumed, then, 
using the labeled samples, the parameters can be estimated. 
(supervised learning)

Maximum Likelihood Estimation of Parameters

• Assume we have a sample set:

• as belonging to a given class. Drawn from                        

(independently drawn from identically distributed r.v.)

samples
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(unknown parameter vector)

for gaussian

The density function                               - assumed to be of known form

So our problem: estimate              using sample set:

Now drop          and assume a single density function.

: estimate of 

Anything can be an estimate. What is a good estimate?

• Should converge to actual values

• Unbiased etc

Consider the mixture density

(due to statistical independence)

is called “likelihood function”

that maximizes 

(Best agrees with drawn samples.)
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if            is a singular,

Then find               such that                  and for solving   for .

When           is a vector, then

: gradient of     L      wrt

Where:

Therefore

or                                                               (log-likelihood)

(Be careful not to find the minimum with derivatives)
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Example 1:

Consider an exponential distribution

otherwise

(single feature, single parameter)

With a random sample

:                                                                   valid for

(inverse of average)            
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Example 2:

• Multivariate Gaussian with unknown mean vector M. Assume       
is known.

• k samples from the same distribution:

(iid)

(linear algebra)
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(sample average or sample mean)

Estimation of         when it is unknown.

(Do it yourself: not so simple)

:sample covariance  

where is the same as above. 

Biased estimate : 

use for an unbiased estimate.
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Example 3:

Binary variables with unknown parameters

(n parameters)

So, 

k samples

here is the      element of       sample .
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So,

� is the sample average of the feature.
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• Since is binary, will be the same as counting the 
occurances of ‘1’. 

• Consider character recognition problem with binary matrices.

• For each pixel, count the number of 1’s and this is the estimate 
of      .
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Part 4: Features and Feature

Extraction



Problems of Dimensionality and Feature Selection

• Are all features independent? Especially in binary features,  we 
might have >100.

• The classification accuracy vs. size of feature set.

• Consider the Gaussian case with same      for both categories.

(assuming a priori probabilities are the same) (e:error)

• where        is the square of mahalonobis distance between class 
means.

Mahalonobis distance     
between      and      (the means)
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• P(e) decreases as r increases (the distance between the means).

If   (all features statistically 

independent.)

then 

We conclude from here that 

1-Most useful features are the ones with large distance and small 
variance.

2-Each feature contributes to reduce the probability of error. 
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• When r increases, probability of error decreases.

• Best features are the ones with distant means and small 
variances.

� So add new features if the ones we already have are not 
adequate (more features, decreasing prob. of error.)

� But it was shown that adding new features after some point 
leads to worse performance.



� Find statistically independent features

� Find discriminating features

� Computationally feasible features

Principal Component Analysis (PCA) (Karhunen-Loeve
Transform)

• Finds (reduces the set) to statistically independent features.

vectors

Find a representative 

Squared error criterion
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Eliminating Redundant Features

is to be found using a larger set

So we either

� Throw one away

� Generate a new feature using      and       (ex:projections of the 
points to a line)

� Form a linear combination of features. 
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A linear transformation

W?  Can be found by: K-L expansion, Principal Component Analysis

W :above are satisfied (class discrimination and independent x1, 
x2,..).

represented with a single vector      .

-Find a vector      so that sum of the squared distances to       is 
minimum(Zero degree representation).  
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squared-error criterion

Find        that maximizes      .

Solution is given by the sample mean.
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Where ,
this expression is minimized.

Consider now 1-d representation from 2-d.

-The line should pass through the sample mean.

unit vector in the direction of line
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• Now how to find best e that minimizes

• It turns out that given the scatter matrix

• e must be the eigenvector of the scatter matrix with the 
largest eigenvalue lambda     .

• That is, we project the data onto a line through the sample mean 
in the direction of the eigenvector of the scatter matrix with 
largest eigenvalue.

• Now consider d dimensional projection

• Here                 are d eigenvectors of the scatter matrix 

having largest eigenvalues.
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Coefficients      are called principal components.

• So each m dimensional feature vector is transferred to d
dimensional space since the components are given as

• Now represent our new feature vector’s elements

So

ia

ia

)( MXea k

T

iki −=

)(

:

)(

)(

'

22

11

MXea

MXea

MXea

k

T

did

k

T

i

k

T

i

−=

−=

−=



FISHER’S LINEAR DISCRIMINANT

• Curse of dimensionality. More features, more samples needed.

• We would like to choose features with more discriminating 
ability.

• Reduces the dimension of the  problem to one in simplest form.

• Seperates samples from different categories.

• Consider samples from 2 different categories now.



-Find a line so that the projection separates the samples best. 

Same as:
Apply a transformation to samples X to result with a scalar 

such that 

Fisher’s criterion function 

is maximized, where

Line 1(bad solution)

Line 2 (good solution)

Blue (original data)
Red(projection onto Line 1)
Yellow(projection onto Line 2)
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• This reduces the problem to 1d, by keeping the classes most 
distant from each other.

• But if we write and in terms of       and
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Then,

- within class scatter matrix

- between class scatter matrix

• Then , maximize   
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• It can be shown that W that maximizes J can be found by 
solving the eigenvalue problem again:

and the solution is given by

• Optimal if the densities are gaussians with equal covariance 
matrices. That means reducing the dimension does not cause any 
loss.

Multiple Discriminant Analysis:  c category problem.

A generalization of 2-category problem. 
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Non-Parametric Techniques
• Density Estimation

• Use samples directly for classification

- Nearest Neighbor Rule

- 1-NN

- k-NN

• Linear Discriminant Functions:  gi(X) is linear.


