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Part 3: Estimation of Parameters



Estimation of Parameters

Most of the time, we have random samples but not the densities given.

If the parametric form of the densities are given or assumed, then,
using the labeled samples, the parameters can be estimated.
(supervised learning)

Maximum Likelihood Estimation of Parameters
Assume we have a sample set:

D={X,X,,...X,}

as belonging to a given class. Drawn from P(X‘a)j)
iid (independently drawn from identically distributed r.v.)
samples



6’]. =[t1,t2,...,tp]T (unknown parameter vector)
0, =(t4:Z)) =[] 1O IS
The density function P(X‘a)j) - assumed to be of known form
So our problem: estimate 6, using sample set:
D, ={X,,X,..X,} iid
Now drop J and assume a single density function.
0 :estimate of @
Anything can be an estimate. What is a good estimate?
« Should converge to actual values
 Unbiased etc .

Consider the mixture density L(0) :P(D‘H) =1 24X,

i=1

0)

(due to statistical independence)

L(0) is called “likelihood function”
O—0 thatmaximizes L(6)
(Best agrees with drawn samples.)



if 0 isa singular,
Then find € suchthat “4=0 and forsolving for 6.
When 6 isavector,then L=L(t,t,,..t,)

V,L=0

V :gradientof L wrt g STL

oL
ot,

Where: Va — =0

oL
ot

Therefore 4 = arg max L(0)

or (log-likelihood)

0= argmax In L(0) = argmax [(60)

(Be careful not to find the minimum with derivatives)



Example 1:

Consider an exponential distributio N
{(96 x>0

f(X:0)=
0 otherwise
(single feature, single parameter) HM L(0) /‘\
With a random sample
(X, X0 X} — X =
L(0) = f(X,, X ypoos X,|0) =[] O™ ¥ 0

valid for i=1

1(0) =In L(0) = anlnﬁ— ezn:xi — nlnH—HZn:xi
i=1 i=1 i=1

dl _ dinL(®) _ _
46 a0 0 x; =0
i=1
N < A 1
=>==)x20= _
l n
= RSl
"~ | (inverse of average)




Example 2:

Multivariate Gaussian with unknown mean vector M. Assume
is known.

k samples from the same distribution:

XlaXz, .......... ’Xk (“d)

k 1 LX) s (x-m)
L(X|M)= 2
11:1[ (2m)""? 2‘1/2
k 1 =M (X
VI=V,, longZVM log——-—7€
i Q2r)"|2

k
=2V, (Glog(2m) ~ log| X |- (X, M) =™ (X, M)
i=1

(linear algebra)

=Z@%x—ﬁ»



k AN
=0=3"() X,—kM)
i=1
j\} = lzk: X (sample average or sample mean)

=l

Estimation of Q. when it is unknown.
(Do it yourself: not so simple)

A 1 n A A T
2= ;;A(Xk ~M)(X, —M) > :sample covariance
where M is the same as above.

Biased estimate: E(c’)# o’

use —— )  ceeeees for an unbiased estimate.



Example 3:

Binary variables with unknown parameters pl<i<n

(n parameters)

log P(X)= ) x,log p,+ ) (1-x,)log(l- p,)
i=1 i=1

So, k
l = lOgL = ZlogP(XJ) k Samples

j=1

n n

k
= Z(inf log p, +Z(1—xl-j)10g(1—l?l-)
j=1 i=l i=l

: - th .
here X ;; isthe I element of ]thsample )(] .



So ) ]
° ﬂlogL
8]71
o
V, logL= ghlogL
8 .
9 Yool
| P, o _
O logL =" ((1-x,)1- p))
6p1 ] =1 pl ’ l
x,——— ) (I1-x,)
pl; ' JZ‘ '

Alk
= h=y 2

% p.is the sample average of the feature.



k
Since X, is binary, ny will be the same as counting the
occurances of 'l -

Consider character recognition problem with binary matrices.

A B

For each pixel, count the number of 1's and this is the estimate

of P;.
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Part 4: Features and Feature
Extraction



Problems of Dimensionality and Feature Selection

« Are adll features independent? Especially in binary features, we
might have >100.

» The classification accuracy vs. size of feature sef.
. Consider the Gaussian case with same 2. for both categories.

P(e) = I e du

|
V 272. r/2
(assuming a priori probabilities are the same) (e:error)

+ where p? is the square of mahalonobis distance between class
means.

Pt = (= ) 2Ty — )

Mahalonobis distance
between (4, and H;,(the means)




« P(e) decreases as r increases (the distance between the means).

2
If o 0 (all features statistically
s 0, independent.)

then

Zl“ . 12) _Z(mll m,

We conclude from here that

1-Most useful features are the ones with large distance and small
variance.

2-Each feature contributes to reduce the probability of error.



e
e
L
-
-
83 gg g

-
O/

2 S %

When r increases, probability of error decreases.

Best features are the ones with distant means and small
variances.

So add new features if the ones we already have are not
adequate (more features, decreasing prob. of error.)

But it was shown that adding new features after some point
leads to worse performance.




v" Find statistically independent features
v" Find discriminating features
v Computationally feasible features

Principal Component Analysis (PCA) (Karhunen-Loeve
Transform)

« Finds (reduces the set) to statistically independent features.

X 8 8 X19X29 °°°°°° 9Xn vectors
% Ry N Find a representative Xo

N N %

N N

Squared error criterion



Eliminating Redundant Features

Y
Yi,), Features that are linearly

® new satmple dependent

in 1-d space

M
So we either
O Throw one away

0 Generate a new feature using V; and )V, (ex:projections of the
points to a line)

d Form a linear combination of features.



X, = fi(Vypeeennen ,V,) |
Xy = fo(V)seueeee V.)

— Linear
functions
X, = f,(Vyseenne V)
X =WY A linear transformation

W? Can be found by: K-L expansion, Principal Component Analysis

W :above are satisfied (class discrimination and independent x1,
x2,..).

Y ST ,X, represented with a single vector X, .

-Find a vector X so that sum of the squared distances to X, is
minimum(Zero degree representation).



f 2
Jo(Xo) = ;HXO X squared-error criterion
Find X, that maximizesJ,, .
Solution is given by the sample mean.
M = lZXk
n
Jo(Xy) = DXy = M) = (X, - M)

= 21X =M =2 20X, M) (X~ M)+ Y| X, - M

0,
= X0 =M =20X, - M) 3 (X, = M)+ S X, - M|




2
= 20X =M+ 2 -]

Independent of X,

Where X, =M,
this expression is minimized.

Consider now 1-d representation from 2-d.
-The line should pass through the sample mean.

X =M +ae

unit vector in the direction of line

X, X - 2
M O\ OO H(M+ake)—XkH
L a,

Distance of Xk from M




Now how to find best e that minimizes J | = Z [ +ae)-x, [
It turns out that given the scatter matrix

S =Y (X, ~MYX, ~ M)’

e must be the eigenvector of the scatter matrix with the
largest eigenvalue lambda 4 .

Se = Ae
That is, we project the data onto a line through the sample mean

in the direction of the eigenvector of the scatter matrix with
largest eigenvalue.

Now consider d dimensional projection

X=M+Zd:aiel.

Here €,.....,€, are d eigenvectors of the scatter matrix
having largest eigenvalues.




Coefficients A, are called principal components.

« So each m dimensional feature vector is transferred to d
dimensional space since the components a; are given as

dy; :eiT(Xk - M)

* Now represent our new feature vector's elements
So

ay :e1T(Xk - M)
)i :ezT(Xk - M)

Ay :edT(Xk -M)



FISHER'S LINEAR DISCRIMINANT

Curse of dimensionality. More features, more samples needed.

We would like to choose features with more discriminating
ability.

Reduces the dimension of the problem to one in simplest form.
Seperates samples from different categories.
Consider samples from 2 different categories now.




Line 1(bad solution)

Blue (original data)
Red(projection onto Line 1)

-Find a line so that the projection separates the samples best.
Same as:
Apply a transformation to samples X to result with a scalar

such that y = w'x

Fisher's criterion function

2
— IS maximized, where
J(W) — (/le lLl2)

2
o, +0,




Zy

l yeC;

——Z(y—ﬂl

l yeC;
« This reduces the problem to 1d, by keeping the classes most

distant from each other.
2
« But if we write Hi and O; intermsof M, and Zl.

ZX

n; xec,
= —Z W'X=w'M
. —
V
o= LS WX WM =LY (X - M)
n; xec, n; xec,

=S M=M= (E (X =M= M) W)

i



=W'SWw
Then, (,U1_/U2)2 :(I/VTMI—VVT]Wz)2 :[WT(Ml_Mz)]Z

W' (M, ~MYM,-M)W=W"'S,W
| |
!
S

o’ +0, = WT(ls1 +8,)W = w'S,w

|
SW
S - within class scatter matrix
g - between class scatter matrix
W . °
Then , maximize

w's w

T =
w

~—
Rayleigh
quotient



« It can be shown that W that maximizes J can be found by
solving the eigenvalue problem again:

S, ' SW =AW
and the solution is given by

W =S, (M, ~M,)

« Optimal if the densities are gaussians with equal covariance
matrices. That means reducing the dimension does not cause any
loss.

Multiple Discriminant Analysis: ¢ category problem.
A generalization of 2-category problem.



Non-Parametric Techniques
« Density Estimation
« Use samples directly for classification
- Nearest Neighbor Rule
- 1-NN
- k-NN
 Linear Discriminant Functions: gi(X) is linear.




