

METU Informatics Institute
Min720

Pattern Classification

Bio-Medical Applications

Lecture Notes
by
Neşe Yalabık
Spring 2011

Part 3: Estimation of Parameters

Estimation of Parameters

- Most of the time, we have random samples but not the densities given.
- If the parametric form of the densities are given or assumed, then, using the labeled samples, the parameters can be estimated. (supervised learning)

Maximum Likelihood Estimation of Parameters

- Assume we have a sample set:

$$
D=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

- as belonging to a given class. Drawn from $P\left(X \mid \omega_{j}\right)$
iid (independently drawn from identically distributed r.v.)
samples

$$
\begin{aligned}
& \theta_{j}=\left[t_{1}, t_{2}, \ldots, t_{p}\right]^{T} \quad \text { (unknown parameter vector) } \\
& \theta_{j}=\left(\mu_{j}, \Sigma_{j}\right)^{T}=\left[\mu_{j 1}, \mu_{j 2}, \ldots, \Sigma_{j 11}, \ldots\right] \quad \text { for gaussian }
\end{aligned}
$$

The density function $\quad P\left(X \mid \omega_{j}\right) \quad$ - assumed to be of known form
So our problem: estimate θ_{j} using sample set:

$$
D_{j}=\left\{X_{j 1}, X_{j 2}, \ldots, X_{j n}\right\} \quad \text { iid }
$$

Now drop j and assume a single density function.
$\hat{\theta}$: estimate of θ
Anything can be an estimate. What is a good estimate?

- Should converge to actual values
- Unbiased etc

Consider the mixture density $\quad L(\theta)=P(D \mid \theta)=\prod_{i=1}^{n} P\left(X_{i} \mid \theta\right)$
(due to statistical independence)
$L(\theta)$ is called "likelihood function"
$\hat{\theta}-\theta$ that maximizes $L(\theta)$
(Best agrees with drawn samples.)
if θ is a singular,
Then find $\quad \theta$ such that $\frac{d L}{d \theta}=0$ and for solving for θ.
When θ is a vector, then $L=L\left(t_{1}, t_{2}, \ldots, t_{p}\right)$

$$
\nabla_{\theta} L=0
$$

∇ : gradient of L wrt $\left.\theta \quad \begin{array}{c}\frac{\partial L}{\partial t_{1}} \\ \frac{\partial L}{\partial t_{2}} \\ . . \\ \frac{\partial L}{\partial t_{p}}\end{array}\right]=0$

Therefore $\quad \hat{\theta}=\arg \max L(\theta)$
or $\quad \hat{\theta}=\arg \max \ln L(\theta)=\arg \max l(\theta) \quad$ (log-likelihood)
(Be careful not to find the minimum with derivatives)

Example 1:

Consider an exponential distribution

$$
f(X ; \theta)=\left\{\begin{array}{cc}
\theta e^{-\theta x} & x \geq 0 \\
0 & 0
\end{array}\right.
$$ otherwise

(single feature, single parameter) With a random sample $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

$$
\begin{aligned}
& L(\theta)=f\left(X_{1}, X_{2}, \ldots, X_{n} \mid \theta\right)=\prod_{i=1}^{n} \theta \cdot e^{-\theta \cdot x_{i}} \quad x \geq 0 \\
& \text { valid for } \\
& l(\theta)=\ln L(\theta)=\sum_{i=1}^{n} \ln \theta-\theta \sum_{i=1}^{n} x_{i}=n \ln \theta-\theta \sum_{i=1}^{n} x_{i} \\
& \frac{d l}{d \theta}=\frac{d \ln L(\theta)}{d \theta}=\frac{n}{\theta}-\sum_{i=1}^{n} x_{i}=0 \\
& \Rightarrow \frac{n}{\hat{\theta}}=\sum_{i=1}^{n} x_{i} \Rightarrow \hat{\theta}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}} \quad \text { (inverse of average) }
\end{aligned}
$$

Example 2:

- Multivariate Gaussian with unknown mean vector M. Assume \sum is known.
- k samples from the same distribution:

$$
\begin{aligned}
& X_{1}, X_{2}, \ldots \ldots \ldots, X_{k} \text { (iid) } \\
& L(X \mid M)=\prod_{i=1}^{k} \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}\left(X_{i}-M\right)^{T} \Sigma^{-1}\left(X_{i}-M\right)} \\
& \nabla l=\nabla_{M} \log L=\sum_{i=1}^{k} \nabla_{M} \log \frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}\left(X_{i}-M\right)^{T} \Sigma^{-1}\left(X_{i}-M\right)} \\
& =\sum_{i=1}^{k} \nabla_{M}\left(\frac{n}{2} \log (2 \pi)-\frac{1}{2} \log |\Sigma|-\frac{1}{2}\left(X_{i}-M\right)^{T} \Sigma^{-1}\left(X_{i}-M\right)\right) \\
& \quad=\sum^{k}\left(\Sigma^{-1}\left(X_{i}-\hat{M}\right)\right) \quad \text { (linear algebra) }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0 \\
&=\Sigma^{-1}\left(\sum_{i=1}^{k} X_{i}-k \hat{M}\right) \\
& \hat{M}=\frac{1}{k} \sum_{i=1}^{k} X_{i} \quad \text { (sample average or sample mean) }
\end{aligned}
$$

Estimation of \sum when it is unknown.
(Do it yourself: not so simple)

$$
\hat{\Sigma}=\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\hat{M}\right)\left(X_{k}-\hat{M}\right)^{T} \quad \hat{\Sigma} \text { :sample covariance }
$$

where M is the same as above.
Biased estimate : $E\left(\sigma^{2}\right) \neq \sigma^{2}$

$$
=\frac{n-1}{n} \sigma^{2}
$$

use $\frac{1}{n-1} \sum \ldots \ldots$. for an unbiased estimate.

Example 3:

Binary variables with unknown parameters $p_{i}, 1 \leq i \leq n$ (n parameters)

$$
\log P(X)=\sum_{i=1}^{n} x_{i} \log p_{i}+\sum_{i=1}^{n}\left(1-x_{i}\right) \log \left(1-p_{i}\right)
$$

So,

$$
\begin{aligned}
& l=\log L=\sum_{j=1}^{k} \log P\left(X_{j}\right) \text { k samples } \\
= & \sum_{j=1}^{k}\left(\sum_{i=1}^{n} x_{i j} \log p_{i}+\sum_{i=1}^{n}\left(1-x_{i j}\right) \log \left(1-p_{i}\right)\right.
\end{aligned}
$$

here $x_{i j}$ is the $i^{\text {th }}$ element of $j^{\text {th }}$ sample X_{j}.

So,

$$
\begin{aligned}
& \nabla_{p_{i}} \log L=\left[\begin{array}{c}
\frac{\partial}{\partial p_{1}} \log L \\
\frac{\partial}{\partial p_{2}} \log L \\
\vdots \\
\frac{\partial}{\partial p_{n}} \log L
\end{array}\right] \\
& \frac{\partial}{\partial p_{i}} \log L=\sum_{j=1}^{k}\left(\frac{x_{i j}}{p_{i}}-\left(\left(1-x_{i j}\right)\left(1-p_{i}\right)\right)\right. \\
& \Rightarrow 0=\frac{1}{\hat{p}_{i}} \sum_{j=1}^{k} x_{i j}-\frac{1}{1-\hat{p}_{i}} \sum_{j=1}^{k}\left(1-x_{i j}\right) \\
& \Rightarrow \hat{p}_{i}=\frac{1}{k} \sum_{j=1}^{k} x_{i j}
\end{aligned}
$$

* $\quad \hat{p}_{i}$ is the sample average of the feature.
- Since X_{i} is binary, $\sum_{j=1}^{k} x_{i j}$ will be the same as counting the occurances of '1'.
- Consider character recognition problem with binary matrices.

- For each pixel, count the number of 1's and this is the estimate of p_{i}.

Part 4: Features and Feature
 Extraction

Problems of Dimensionality and Feature Selection

- Are all features independent? Especially in binary features, we might have >100.
- The classification accuracy vs. size of feature set.
- Consider the Gaussian case with same \sum for both categories.

$$
P(e)=\frac{1}{\sqrt{2 \pi}} \int_{r / 2}^{\infty} e^{-u^{2} / 2} d u
$$

(assuming a priori probabilities are the same) (e:error)

- where r^{2} is the square of mahalonobis distance between class means.

$$
r^{2}=\left(\mu_{1}-\mu_{2}\right)^{T} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

- $P(e)$ decreases as r increases (the distance between the means).

If $\Sigma=\left[\begin{array}{cccc}\sigma_{1}{ }^{2} & & & 0 \\ & \sigma_{2}{ }^{2} & & \\ 0 & & & \sigma_{d}{ }^{2}\end{array}\right] \begin{aligned} & \text { (all features statistically } \\ & \text { independent.) }\end{aligned}$
then

$$
r^{2}=\sum_{i=1}^{d}\left(\frac{m_{i 1}-m_{i 2}}{\sigma_{i}}\right)^{2}=\sum_{i=1}^{d} \frac{\left(m_{i 1}-m_{i 2}\right)^{2}}{\sigma_{i}^{2}}
$$

We conclude from here that
1-Most useful features are the ones with large distance and small variance.
2-Each feature contributes to reduce the probability of error.

- When r increases, probability of error decreases.
- Best features are the ones with distant means and small variances.
$>$ So add new features if the ones we already have are not adequate (more features, decreasing prob. of error.)
> But it was shown that adding new features after some point leads to worse performance.
\checkmark Find statistically independent features
\checkmark Find discriminating features
\checkmark Computationally feasible features

Principal Component Analysis (PCA) (Karhunen-Loeve Transform)

- Finds (reduces the set) to statistically independent features.

Eliminating Redundant Features

$X=\left[x_{1}, \ldots \ldots . . ., x_{d}\right]^{T}$ is to be found using a larger set $Y=\left[y_{1}, \ldots \ldots \ldots, y_{m}\right]^{T}$

So we either
Throw one away
Generate a new feature using y_{1} and y_{2} (ex:projections of the points to a line)

- Form a linear combination of features.

$$
\left.\begin{array}{l}
x_{1}=f_{1}\left(y_{1}, \ldots \ldots, y_{m}\right) \\
x_{2}=f_{2}\left(y_{1}, \ldots \ldots, y_{m}\right) \\
x_{d}=f_{d}\left(y_{1}, \ldots \ldots, y_{m}\right)
\end{array}\right] \begin{aligned}
& \text { Linear } \\
& \text { functions }
\end{aligned}
$$

$$
X=W Y \quad \text { A linear transformation }
$$

W? Can be found by: K-L expansion, Principal Component Analysis
W :above are satisfied (class discrimination and independent $x 1$, $\times 2, .$.$) .$
$X_{1}, \ldots \ldots \ldots . . ., X_{n}$ represented with a single vector X_{0}.
-Find a vector X_{0} so that sum of the squared distances to X_{0} is minimum(Zero degree representation).

Find X_{0} that maximizes J_{0}.
Solution is given by the sample mean.

$$
\begin{aligned}
& M=\frac{1}{n} \sum X_{k} \\
& J_{0}\left(X_{0}\right)=\sum\left\|\left(X_{0}-M\right)-\left(X_{k}-M\right)\right\|^{2} \\
= & \sum\left\|X_{0}-M\right\|^{2}-\sum 2\left(X_{0}-M\right)^{T}\left(X_{K}-M\right)+\sum\left\|X_{k}-M\right\|^{2} \\
= & \sum\left\|X_{0}-M\right\|^{2}-2\left(X_{0}-M\right)^{T} \overbrace{\sum^{2}\left(X_{K}-M\right)}+\sum\left\|X_{k}-M\right\|^{2}
\end{aligned}
$$

$$
=\sum\left\|X_{0}-M\right\|^{2}+\underbrace{\sum\left\|X_{k}-M\right\|^{2}}_{\text {Independent of } X_{0}}
$$

Where $\quad X_{0}=M$,
this expression is minimized.

Consider now 1-d representation from 2-d.
-The line should pass through the sample mean.

$$
X=M+a e_{\text {unit vector in the direction of line }}
$$

- Now how to find best e that minimizes $J_{1}=\sum\left\|\left(M+a_{k} e\right)-X_{k}\right\|^{2}$
- It turns out that given the scatter matrix

$$
S=\sum_{k=1}^{n}\left(X_{k}-M\right)\left(X_{k}-M\right)^{T}
$$

- e must be the eigenvector of the scatter matrix with the largest eigenvalue lambda λ.

$$
S e=\lambda e
$$

- That is, we project the data onto a line through the sample mean in the direction of the eigenvector of the scatter matrix with largest eigenvalue.
- Now consider d dimensional projection

$$
X=M+\sum_{i=1}^{d} a_{i} e_{i}
$$

- Here $e_{1}, \ldots ., e_{d}$ are d eigenvectors of the scatter matrix having largest eigenvalues.

Coefficients a_{i} are called principal components.

- So each m dimensional feature vector is transferred to d dimensional space since the components a_{i} are given as

$$
a_{k i}=e_{i}^{T}\left(X_{k}-M\right)
$$

- Now represent our new feature vector's elements

So

$$
\begin{gathered}
a_{1 i}=e_{1}^{T}\left(X_{k}-M\right) \\
a_{2 i}=e_{2}^{T}\left(X_{k}-M\right) \\
: \\
a_{d^{\prime} i}=e_{d}^{T}\left(X_{k}-M\right)
\end{gathered}
$$

FISHER'S LINEAR DISCRIMINANT

- Curse of dimensionality. More features, more samples needed.
- We would like to choose features with more discriminating ability.
- Reduces the dimension of the problem to one in simplest form.
- Seperates samples from different categories.
- Consider samples from 2 different categories now.

-Find a line so that the projection separates the samples best.
Same as:
Apply a transformation to samples X to result with a scalar such that $y=W^{T} X$
Fisher's criterion function

$$
J(W)=\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \quad \text { is maximized, where }
$$

$$
\begin{aligned}
\mu_{i} & =\frac{1}{n_{i}} \sum_{y \in C_{i}} y \\
\sigma_{i}^{2} & =\frac{1}{n_{i}} \sum_{y \in C_{i}}\left(y-\mu_{i}\right)^{2}
\end{aligned}
$$

- This reduces the problem to 1 d , by keeping the classes most distant from each other.
- But if we write μ_{i} and σ_{i}^{2} in terms of M_{i} and Σ_{i}

$$
\begin{aligned}
M_{i} & =\frac{1}{n_{i}} \sum_{X \in C_{i}} X \\
\mu_{i} & =\frac{1}{n_{i}} \sum \underbrace{W^{T} X}_{y}=W^{T} M \\
\sigma_{i}^{2} & =\frac{1}{n_{i}} \sum_{X \in C_{i}}\left(W^{T} X-W^{T} M_{i}\right)^{2}=\frac{1}{n_{i}} \sum_{X \in C_{i}}\left(W^{T}\left(X-M_{i}\right)\right)^{2} \\
& =\frac{1}{n_{i}} \sum W^{T}\left(X-M_{i}\right)\left(X-M_{i}\right)^{T} W=W^{T}\left(\frac{1}{n_{i}}\left(\sum\left(X-M_{i}\right)\left(X-M_{i}\right)^{T}\right) W\right)
\end{aligned}
$$

$$
=W^{T} S_{i} W
$$

Then,

$$
\begin{aligned}
& =\underbrace{\left(\mu_{1}-\mu_{2}\right)^{2}=\left(W^{T} M_{1}-W^{T} M_{2}\right)^{2}=\left[W^{T}\left(M_{1}-M_{2}\right)\right]^{2}}_{S_{B}} \\
& \left.=M_{2}\right)\left(M_{1}-M_{2}\right)^{T}
\end{aligned}=W^{T} S_{B} W,
$$

$$
\sigma_{1}^{2}+\sigma_{2}^{2}=W^{T} \underbrace{\left(S_{1}+S_{2}\right)}_{S_{W}} \text {) } W=W^{T} S_{W} W
$$

S_{B} - within class scatter matrix
S_{W} - between class scatter matrix

- Then , maximize

$$
J(W)=\frac{W^{T} S_{B} W}{W^{T} S_{W} W} \longleftarrow \underbrace{}_{\begin{array}{c}
\text { Rayleigh } \\
\text { quotient }
\end{array}}
$$

- It can be shown that W that maximizes J can be found by solving the eigenvalue problem again:

$$
S_{W}^{-1} S_{B} W=\lambda W
$$

and the solution is given by

$$
W=S_{W}^{-1}\left(M_{1}-M_{2}\right)
$$

- Optimal if the densities are gaussians with equal covariance matrices. That means reducing the dimension does not cause any loss.

Multiple Discriminant Analysis: c category problem.
A generalization of 2-category problem.

Non-Parametric Techniques

- Density Estimation
- Use samples directly for classification
- Nearest Neighbor Rule
- 1-NN
- k-NN
- Linear Discriminant Functions: $g i(X)$ is linear.

