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Pattan Recognition: D efinitions

Pattern RECOQI']It'IOﬂ(PR): The process of machine perception for an

autom atic labeling of an object or an event into one of the predefined
categories.

Pattern C lassification: Final step in a PR system

We human beings do pattern recognition everyday.
W e “recognize” and classify many things,
even if itis corrupted by noise, distorted and variable
Classification is the result of recognition:learning, categorization, generalization

A problem is a PR problem only if itinvolves ‘statistical variation’



E xanmple

W e see here that all 9's are different from each other

and 9's and 4's can easily be mixed
/2 9 3 Recognized as 1393
4 ‘_3

s

Recognized as 1434

Recognized as 1060

Recognized as 1394

Recopmered as 1995

RV N

Recognized as 1940

Recogmired as 1930

Recognized as 1993

"‘"-""'-""""""'-m"

Recopmized as 1573

Recognized as 1583

Recognized as 1951

\gum@&@&&m@
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E xanple Applications of Pattan Recognition

Reading hand-written text to classify it into letters

and words

A nalyzing fingerprints to find the owner
Recognizing the faces of people to name them
Finding buildings in a satellite image

Naming a gun from its bullet mark (B allistics)
ldentifying different objects on a conveyor belt

A nalyzing test results in decision support for any

ilIness



Pattan Recognition: D efinitions

A Pattern Recognition System consists of the
following parts:

Pre-processing and F eature E xtraction
L earning

C lassification

Post- processing



Pattan Recognition: D efinitions

“Pre- processing and Feature Extraction” converts

'data'to 'features'

“Data” raw data taken as sam ples

“Feature”a discriminating, easily measurable characteristics of

our data.

2 S

“Feature Vector”:A setof variables that represent different

features

” .

“Feature Space .is defined by a feature vector



Pattan Recognition: D efinitions

Pre-processing and Pattern E xtraction

A ll operations over raw data(such as aremotely sensed image)to

enhance and process it ,leading to extraction of features .
Includes enhancement, edge extraction, segmentation etc.

Pattern extraction results with a feature vector X



E xample

Consider recognition of handw ritten characters:

A - M, M,,..M,

Raw data:Bitmap Features: M omentinvariants
M
0)
0O O 2-d featurespace
( OO0
O O
L 0
MO
Letta A



data:Bitmap

E xample

Clasification of land use from multispectral data

original input vector dimensionality target land
dimensionality after pruning use classes

red I
urban dense
green I I

MIR urban sparse I
] A green I
NIR forest I
_l aderbigh. |

NIR classification
slope A agricultural I
a aspect s
l s0il  sparse

aspect I vagatation
elavation I
. water
elevation I

International Journal of Remote Sensing

Publication details, including instructions for authors and subscription information-
http://www. informaworld.com/smpp/title~content=t713722504

Satellite image classification using granular neural networks

D Stathakis™:; A Vasilakos®

* Department of Planning and Regional Development, University of Thessaly., Pedion Areos 38334,
Greece P EC Jeint Pesearch Centre, IPSC, MARS-FOOD, 21020 (VA), Italy



Pattan Recognition: D efinitions

Learnlng: D evising a classifier from collected samples with or

without known labels(categories)

“Learning samples” Large data sets to be used in training, or estimating
parameters, etc. They may be labeled or not.

Given the learning data set with known labels:supervised learning;Unknown
labels: unsupervised learning and clustering

“Test Samples” used in testing the classifier performance.
“Result” a decision on the category sample belongs.
“Performance” How well a classifier correctly recognizes test samples

“Correct Classification ratio” ratio of correctly classified samples to all test
samples H



Pattan Recognition: D efinitions

Classification
feature 1
e Fmtumsmfdzfmturg
e
A n
. -

A dedsion boundary

How do we separate A ’s from B ‘s?
Form a decision boundary
Classify the sample to the side it falls



Pattan Recognition: D efinitions

Post- pr'ocessing: Domain knowledge may be incorparated to correct mistakes, such as
using language to correct letter classifiers

A Pattern Recognition System

Feaatu
-~ » Preprocessing S Classification %Pmmocessirg
Raw !
data Modd pararetas etc
Y » Laming

. Resylt



Objectivein PR

Performance criteria: Minimizetheaverageerror (at least as good as a human
being)

M inimize the risk: wrong decision could be more risky in some cases such as medical

diagnosis
W hy automise? Obvious reason: save from time and effort
(Ex: consensus forms: enter 100 million records into electronic medium ).
H ow do machines solveit: m any different approaches in history
Statistical Pattern Recognition: relies on statistics of collected data

Structural Pattern Recognition: tries to discover the structure inherent in data

(ex: may assume letters are composed of strokes etc)



Statistical Approach toP.R

X=X, X, X,]

Dimension of the featurespace: g
Set of diffaent states of nature: (0,0 5,0 )
Categories: ¢
ind
I R, RnR =¢ uR =R"
set of passibleactions (dedisions): 1 150 25+ .}
Here, aaedsion nmight includea ‘reject option’
A D isaiminant Functian 2.(X)

inregion p ;dedsionrule: if g, g, (X)> g,(X)

R
282

g.(X)2 g,;(X)

1<i<c



A Pattan Classifia

g,(X)

\

> g2,(X)

g.(X)

e

So our aim now will beto define these functions

to MiNiMize or opﬁmizea criterion.

»| Max




Bayes Classifias

A Parametric approach which assumes that the feature
vectors are random variables with known probability

distributions.

‘Bayes Decision Theory ' isused or minimum -error-

minimum risk pattern classifier design.

It is assumed that if a sample X isdrawn from

category wi, itisarandom variable represented with a

multivariate probability density function called
"Class-conditional density function'

PX Wi)



We also know a-priori probability Pw))

Then, we can talk about a decision rule
that minimizes the probability of error.

Suppose we have the observation X
This observation 1s going to change a-prior1 assumption
to a-posteriori probability:

P,

X)

which can be found by the Bayes Rule



P,|X)= P(0,,X)/P(X)

_ P(X[p,)-P@,)
P(X)
P(Xx) @ befoundby Total Probability Rule:
When
X\
P(X)=Y P@,;X)
=1 s
W, w,

Decision Rule: Choose the category with highest a-posteriori probability,
calculated as above, using Bayes Rule.



then, gi(X):P(wiX)
D edision baundary: g1- &
wj g2 > gl
R, R,
arin ganaal, dedision boundaries arewhare:.
g,(X)= g, (X)

betwenregions g and R,

20



Singlefaature- dedsion boundary - paint

2 faatures- aurve (quadratic for gaussian distribution)
3faatures-  surface

Marethan 3 - hypasurface

g:(X)= P(X

0,).PW,)

P(X\w.).P.
£i()= T DO

Saretines, it is exsia towark with logarithrs
g;(X) = log[P(X|w,).P(w,)]

g;(X)=logP(X|w,;)+ log P(w;)
Since logarithmic function is a nonotoniaally inareasing function, log fn.will give
thesameresult.

21
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FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R; is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David .
Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



Bayesian Discriminant Functions

For MininumE ror:

For MininumRisk:

Whae

t P(w,|X)
t P(X\0,).P);)
t log P(X|w,)+ log P(w,)

- R'(X)

C

R'(X)-= Z A,

J=1

w,).P(w,|X)

23



FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
malrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of

d — 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|uw;) and the boundaries for the case Play ) = P(w,). In the three-dimensional case,

the grid plane separates Ry from R,. brom: Richard O, Duda, Peter E. Hart, and David C. Stork, Fattern
Classification. Copyright © 2001 by John Wiley & 5Sons, Inc.

24



Bayes (MaxinumL ikdihood) D ecision Classifia

Bayes Classifier can be shown to result with a

minimum average error/isk, therefore considered to
be optim al

M ast genaal gptinl solution

Can beusdd if the parametric modds are known or propatly
estimated

Provides an uppa- linit(you cannot do betta with otha rule)
U seful in cormparing with other dassifias



M inimum D istance Classifier: A special case of Bayes

Classify an unknown sanpleX to the category with closest maan !
Optinumwhen gaussian dansities with equal variance and equdl a-priori probability.

R, M,
/"-

Piecewise linear bounaary in case of nore than 2 categories.

26



Naive Bayes Classifier

A nother special case

A ssumes the features are statistically independent for
a given category

Results with: Px1,x2,x3...)=p&1 )p X2 ) x3)...
Simplifies the decision rule

O ften used in practice

27



E stimation of Parametas

Bayes Rule is great if you know the class—conditional

densities, but not available in nature

|f the param etric form of the densities are given or
assumed, then, using the labeled samples, the

param eters can be estim ated. (supervised learning )
Maximum Likelihood Estimation of param eters
U se the sampleset X1, X2, X 3,.......

Find the param eters that will result with most likely

combination

28



F aatures and F aature Selaction

Curse of dimensionality: High number of features increase the
correct classification ratio but require too much data!

We should remove unnecessary features

Are all features independent from each other? Can we reduce the
size without loosing information, by eliminating
redundancies?(Principal Component analysis)

Are the features class discriminating? Again, remove features that
have no discriminating ability(Fishers etc)

29



Eliminating Redundant Features

X =[x X, T is o be found using a larger set )
Y = [ Vipeerneees V.
V2
% Vis Vo
| y Features that are linearly dependent
L' so they can be reduced to 1
So we either

Throw one away

Generate a new feature using  and
(ex:projections of the points to a line)

Form a linear combination of features.

30



X 2 [1(D e V) |
x2 - fz(yp °°°°°°° 9ym)

——

Linear functions of y

X, = [V V)

X=WY

A linear transformation

W? Can be found by:
_ K-L expansion, Principal Component Analysis(PCA)

PCA uses eigenvalue approach to result with an ordered set of
features,
in order of statistical independence.

So pick first d 'most independent' features

31



Fisher’s Linear Discriminant

*Curse of dimensionality. More features, more samples needed.
*We would like to choose features with more discriminating ability.
*Reduces the dimension of the problem to one 1n its simplest form.
*Seperates samples from different categories.

*Consider samples from 2 different categories now.

32



Line 1(bad solution)

Blue (original data)
Red(projection onto Line 1)

-Find a line so that the projection separates

the samples best. _

Same as: y = WT X

Apply a transformation to samples X to result

with a scalar such that Fisher’s criterion function 1s maximized, where

_ 2
J(W) - (lu 12 /'12)2
0,740, .



It can be shown that W that maximizes J can be found
by solving the eigenvalue problem again:

S, 'SW=\W
and the solution 1s given by

W = SW_I(MI - Mz)

Where SB and Sw are 'scatter matrices'
defined as functions of data scattering.

Multiple Discriminant Analysis: ¢ category problem.

A generalization of 2-category problem. Generalization to
M dimensions 1s also possible.

34



k-Neawrest Naghbor (k-NN ) Rule

Non-parametric classification rules:

Linear and generalized discriminant functions
Nearest Neighbor & k-NN rules

Nearest Neighbor Classification Rule
1-NN: A direct classification using learning samples
Assume we have learning samples from different categories

Assume a distance measure between samples such as euclidian

d(X*, X"

35



A general distance metric should obey the following rules:

d( X7, X")= 0
d(X7, X"y d(X", X"
d(X,Y)< d(X,Z)+ d(Z,Y)

Most standard: Euclidian Distance

ax=x-vl= 03 G-y =l ey

1-NN Rule: Given an unknown sample X

1/2

36



0; i«
d(X,X*)<d(X, X"

For Jl # ik 0

That 1s, assign X to category 'if the closest neighbor of X 1s from
category 1. N

x"X/,Q
% @0

8 O 0O
>
O O

O

Results with piecewise linear decision boundaries.

37



Voronoi Diagrams

Decision boundary

J/. 1s a polygon such that any point that falls in}/. 1s closer to sample
S, ‘than any other sample S i

k-NN rule: mstead of looking at the closest sample, we look at k nearest
neighbors to X and we take a vote. The largest vote wins. k 1s usually
taken as an odd number so that no ties occur. 5



Analysis of NN rule is possible whed - ® and it was
shown that 1t 1s no worse than twice of the minimum-error
classification (in error rate).

EDITING AND CONDENSING

NN rule becomes very attractive because of 1ts simplicity and
yet good performance.

So, it becomes important to reduce the computational costs
involved.

Do an intelligent elimination of the samples.

Remove samples that do not contribute to the decision
boundary.

39



L inear D isariminant F unctions

A ssume the discriminant functions are linear functions of X

g(X)=wx +twx,+....twx +w

=W 'X + w,
W=lw.... w !
X = :xl .......... xn]T

We may also write g in more compact form

gX)=wW,'X, =W,y V=X, =[x,




L inear D isariminant F unctions

®°lts assumed that the discriminant functions
are linear(boundaries are linear)
°The labeled learning samples are used to find

best boundaries.

°Finding the g is the same as finding W a.
‘How do we define the ‘best’?
®All learning samples are classified correctly?

°Does a solution exist?

41



Linear Separability

v

V4
/7

@ R XOR Problem

/ “ ] Solution 2

Seperable,many solutionsions possible

Not linearly separable

: 8
Solution 1 % /
X O
3 ) ©
® %
% “& e g ©

If a solution exists-the
problem is called “linearly
separable” and W, is found

iteratively. Otherwise "not
linearly separable”
piecewise or higher degréeé
solutions are seeked.



I[terative Solution: start with an initial estimate and update it until

a solution is found.

ao

T ©

* Gradient Descent Procedures
* Perceptron Criterion function
* One-layer Perceptron(Rosenblatt)



Assume linear separability.

perceptron learning
An 1terative algorithm that starts with an initial weight vector
and moves 1t back and forth until a solution 1s found.

x
&
8

w(2) w(1)

Update of the weights are done using misclassified samples, towards
reducing them

44



Generalized Discriminant Functions
When we have nonlinear problems as below:

Then we seek for a higher degree boundary.
Ex: quadratic boundary

g(X)-= z z WX, Xt z WX, T W,
will generate hyperquadratics boundaries.
g(X) still a linear function w’s. g(Y)=W'Y

45



NON-SEPARABLE CASE-What to do?

It was shown that we can increase the feature space dimension
with a nonlinear transformation, the results are linearly separable.
Then find an optimum solution.(Support Vector Machines)

46



X

FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace

the two-dimensional x, — x subspace or a one-dimensional x, subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:

Richard O Duda, Peter E. Hart, and David . Stork, Fattern Classification. Copyright
@ 20017 by John Wiley & Sons, Inc.

here,

47



UNSUPERVISED LEARNING AND CLUSTERING

No class labels for learning samples.

We need additional means to label and classify — can be done separately
(first label then classify) or together.

PARAMETRIC APPROACHS- Estimation of class conditional densities
NONPARAMETRIC — CLUSTERING

&
3 ",gx Problem:
:&x Given samples X,, X,............ , X,
5%, Group them into clusters so that samples in same
e cluster are "similar”

Easy separation example

48



Difficult separation

49



I second-order statistics.

1Ca

ing identi

Data sets hav

FIGURE 6.7.
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Scaling Effects

X X2
A N
y . o
.!.J « ¢ . ‘ .’.
—y e o —eg—4p- X, ‘ 1-!1*?* . > X
v -0 ) | e
] ‘. N L

FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here, /
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Criterion Functions for Clustering

C 2 _ 1 C .
72§ 43 e M= 39 S

1
S, = —

= 7
(57 b
n,‘ xC; xUC;

c- number of clusters
M. — mean of the samples in the same cluster

Aim: determine the partition that will minimize J.
Minimum variance partition ( sum of squared error criterion)

Sum of squared error criterion

1

M, = o X Sample mean for cluster D,
i xUD,

Sum of squared errors:

J.=Y ] -

i=1 x

Using J_ results well for compact clusters.

2
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Basic ISODATA Algorithm (k-means)
Assume that there are k categories

. Choose k arbitrary points in space as cluster centers.
Mg, Mg M,
. Assign samples to their nearest cluster.
. Update M’s. If any means changed value, go to 2. Otherwise stop.

May fall into local minimum.

53



|[terative M inimum Squared Error Clustering

B Algorithm 3. (Basic Iterative Minimum-Squared-Error Clustering)

1 begin initialize n, ¢, m;, m,, ..., m,

2 do randomly select a sample X

3 i  argmin [my —&||  (classify X)
4

if n; # 1 then com_putc
| n; +1 ”x mj”2 J #l

Lk -ml? =
if o < < p; for all j then transfer X to Dk
recompute J,, m;, my
until no change in J, in n attempts
Le_mmlsm%-“amc |

n

pj=‘l

O W 00 -1 O

end

54



Hierarchical Clustering

A different approach to clustering.
Hierarchy 1n living species
Each species 1s a class by itself.
Combine the ones that are closest

Continue combining until the number of clusters are what 1s
desired or a criterion is satisfied.

7
””””””””””””””””””””””””””””””””””””””””” 3 clusters
6
4 5

o b1 i L
Issues:
How do we measure distance between clusters?
When do we stop? .

Do we start from bottom or from top?



Basic Bottom-up Hierarchical Clustering Algorithm for
k clusters

1. Start taking each sample as a cluster. n=m (n of samples)

2. Measure d;; — distance betwegh ohustdrs D, and D.. Join two
clusters D, and D, for which

n=n-1;

3. Ifn<k stop. k:number of desired clusters
Else go to 2.

d; can be defined in many ways.(where sisin1and z1s in J:)

a’mini’j = minfx, - x,
1
dpy = —(3 Y |- x|
nl.nj
d_ = max|x, - x_

56



min

/ dm ax

Example
Apply hierarchical clustering with d_. to below data where c=3.

- @ will form elongated clusters!

Narest Neighbar Clustaing

57



TreeClassifias

Consider the feature vector X = (x1,x2,x3....xn)

A tree classifier considers features one by one instead
of asawhole and measures them one by one,
following the leaves of a tree. T he features are

usually binary valued .

An optimum tree can be constructed using learning

samples.
L eaves of the tree correspond to the classes.

Example will be seen in the following .

58



TreeClassifias: E xanple

Classification of illness 'O steoarthritis'to levels 0-4

Using features obtained by gait (walking )analysis and
patient history

The tree is generated by using 'gini ' impurity index

OAGAI T: A D edsion Suppart Systenfor Grading K nee Osteoarthritis using
Gait D ata' Patten Recogniton L ettas, July 2010
N. Koktas, N. Yalabik, G. Yavuzer,P. Dunn, V. Atalay

59



Implementation and results

PATT =2

80% success ratewith 100 test sanples

60



Decision Tree Construction as Learning

Binary Tree (A ll trees can be converted to a binary
tree)

impurity’ measure used to decide how to split a
tree (w hich feature to start with ); shows how samples

are distributed to categories as a result of split
Split the tree so that impurity is low est

‘entropy impurity ', 'variance impurity’, 'Gini impurity’

61



Training and Pafonmance Testing in PR

W hichever classifier is used, there is usually a

training (learning ) stage
How to train with available data?
Validation and Cross-Validation
How to test the performance?
Confusion M atrices

ROC Curves

62



Cross-Validation

A ssume a set of labeled samples are available

A number of them will be used to train the classifier
and others to test the results(do not use the same

samples)

M -fold cross-validation:
Divide the sample set into m disjoint sets of equal size
Train m times, each time with a different set used in testing
The performance is measured as the mean of errors each

time

63



Paformance Testing

Simplest method: Confusion M atrices

Shows which category is confused with which

Estimated classes

0 1 2 3 | total | error rate

Actual 0 271 7| 5 1| 40 0,325
classes | 1 3| 24| 7 6| 40 0,4
2 3| 8| 21 8| 40 0,475

3 3| 5| 12| 20| 40 0,5

Total | 36| 44| 45| 35| 160 0,425

64



ROC (Receiver Operating Characteristic)Curves

A ssume 2 categories, where our aim is to detect a single object

against all others (@ binary classifier)
‘hit' correctly classifying the object (tfrue positive)

‘false alarm 'incorrectly finding that there is an object when it

is not there (false positive)
'miss' finding no object when it isthere(false negative)

Probability of 'hit' vs the probabilty of 'false alarm ' is called a
ROC Curve.

A ROC Curveis usually used to compare the classifiers.

65



v i

Y True Fal=e
Positives Poszitives
Hvpothesized
class
N Fal=e True
Negatives Negatives
Column totals: P N
fp rate = % tp rate = 'I;'
precision = g recall = &5
o TP4TN e _ 2
ACCUracy = —par F-measure = 1/precision+1 /recall



Measures of Performance

Sensitivity (recall rate)
number of True Positives

sensitivity =
J number of True Positives + number of False Negatives
Specifity
. number of True Negatives
specificity =

number of True Negatives + number of False Positives

67



Examples of ROC Curves

(Taken from:Tom Fawcett ROC Graphs: Notes and Practical

Considerations for researchers')

ROV gpraphs

Trua Positrva rala

). 2 0.4 ] & 1.8 1.3
Fala Positive rate

Trua Positive rala

I I I I

].2 a.4 ] .4 b.g 1.1

Faksa Pos ft;"n.rﬂ ra'é

Figure 7. Two ROC graphs. The graph on the left shows the ares under two ROC
curves. 1 he graph on the right shows the area under the curves of a discrete classifier

iA) and a probabilistic classifier (B).
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Example:Microcalcifications in a Mammogram

)
A Support Vector Machine Approach for Detection of Microcalcifications'

IssamE [-Naqa et al
IEEE TRANSACTIONS ON MEDICAL IMAGING,VOL. 21,NO. 12,DECEMBER 2002

69



Performance Comparison using a ROC curve

Higher the curve is, better the performance

-3~ SVM classifier
—— SVM-SEL
—2>¢ Wawvelet

- DoG

-8 DTF

—0- Neural Network

0.5

uonoel) d1

4.5

2 2.5 3 3.5

1.5

1

Awvg. Number of FP Clusters

70



Refaaces

'Pattern C lassification R . D uda, P. Hart, D . Stork 2"
ed. Wiley 2001

'Pattern Recognition' S.Theodoridis, K.Koutroumbas”
, Elsevier, 2003

Min720 Lecture Notes, N. Yalabik, ODTU 2010

http://home.comcast.net/~tom.fawcett/public _html/pap
ROC Curves)

Others 1n respective pages

71


http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf(for

