
Lecture III : Realistic motion in one dimension

I. GUIDELINES TO WRITING GOOD CODE

• Your code should be readable by others. For this,

– Write plenty of comments.

– Choose variable names that are self-explanatory.

– Use subroutines instead of a large piece of code.

– Sacrifice compactness for clarity. Don’t avoid extra variables and lines of code if it makes it more readable.

• Don’t begin to write code immediately after you are faced with a problem. Make an outline thinking about
what variables you’ll need and what algorithm you will use. If necessary, write on a piece of paper a pseudocode.

• Most of the time, you will find yourself drawing graphs of the data that your program outputs. Format your
output in a way you can use with your preferred plotting program.

• Test your program throroughly using well-known limits, special cases or when available with exact results.

• Have a good understanding of the approximations you make. Do a thorough error analysis.

II. CYCLIST

A. No air drag

If you have ever ridden a bicycle, you will know that air resistance and wind play a very important role in determining
your speed. In the absence of friction (air or contact friction) and wind, determining the speed of a cyclist with a
constant power output is very straightforward and can be done analytically. The equation that we need to solve is
simply Newton’s second law :

a =
F

m
⇒

dv

dt
=

F

m
(1)

Let’s assume that the power, P , generated by the cyclist is constant in time. The definition of power is the energy
output per time, namely,

dE

dt
= P (2)

and because we are ignoring friction and assuming we are on a flat road, the power output of the cyclist is completely
converted into propelling forward the bicycle and himself, i.e. into kinetic energy only,

dE

dt
=

(

1

2
Mv2

)

dt
= Mv

dv

dt
= P. (3)

where M = mb +mc is the total mass of the bicycle, mb and the cyclist, mc. Substituting Eq. 3 into Eq. 1, we obtain,
for the time evolution of the velocity,

dv

dt
=

P

Mv
. (4)

If the initial velocity of the cyclist is v0, this equation can be easily solved analytically to assume the form,

v(t) =

√

2Pt

M
+ v2

0 . (5)

As expected, without friction, the cyclist will accelerate indefinitely without reaching a limiting velocity.
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Although the analytical solution of this problem is trivial, let’s now discuss how we would handle it computationally.
That is to say, given the problem parameters such as mass , power and the initial velocity, how would we determine
computationally the velocity of the cyclist at a given time, t?

Numerical computation usually deals with discrete variables rather than continuous ones. Because we cannot treat
the velocity computationally as a continuous variable, we evaluate it at discrete time intervals, ∆t, 2∆t, 3∆t, · · · . The
smaller we make ∆t, the closer we are to the real solution.

In order to express the time derivative of velocity in terms of ∆t, we remember the definition of the derivative from
elementary calculus classes

dv

dt
= lim

∆t→0

v(t + ∆t) − v(t)

∆t
. (6)

Notice that the derivative is essentially the difference between the velocity at the next time step and the present
velocity. This difference should converge to the exact derivative at the limit of very small ∆t. Substituting this in
Eq. 18, we obtain

v(t + ∆t) − v(t)

∆t
=

P

Mv(t)
. (7)

Eq. 7 is iterative, meaning that given the velocity at any time, the velocity at the next time step can be obtained. This
then gives us a way to iteratively calculate the velocity for all times given the initial velocity. For ease of translation
into a programming language, we can denote each time step with an index, for example, n,

vn+1 − vn

∆t
=

P

Mvn

(8)

where vn = v(tn) and ∆t = tn+1 − tn. Isolating vn+1 in Eq. 8 gives

vn+1 =
P

Mvn

∆t + vn (9)

Let’s now think of an outline of a program to do the iterations. In lab, we are going to learn how to cast this equation
in the form of an Octave script.

Outline :

• Choose constants for the problem. Make sure you stick to a consistent set of units be it SI, a.u. or cgs. Let’s
think of a reasonable set of constants :

Parameter Octave symbol Value Unit
Constant power output of biker P 400 W

Mass of a race bike mb 15 kg
Mass of the cyclist mc 55 kg

Initial velocity v0 4 m/sec
Time increment dt 0.1 sec

• Choose a suitable ∆t.

• Start with the initial velocity, v0.

• Substitute vn into Eq. 9 to get vn+1.

• Collect all the velocities and write to file.

Let’s now cast this into Octave code :

hande@439a:~$ cat bicycle_nodrag.m

## Velocity profile of a cyclist in the absence of drag

## Define the constants of the problem in the correct units
v0 = 4; ## initial velocity of the cyclist [m/s]
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P = 400; ## power output of the cyclist [Watts]
mc = 55; ## weight of cyclist [kg]
mb = 15; ## weight of bike [kg]
m = mb+mc; ## total weight [kg]
ttotal = 300; ## total time of simulation [sec]
dt = 0.1; ## time step [sec]

## Calculate the number of steps that need to be taken to cover a time
## interval of ttotal. Make it an integer by rounding down (or up, it
## doesn’t make a difference)
Nsteps = floor(ttotal/dt);

## Initialize the velocity array. At the moment it’s a single number but it
## will become an array as we loop
v=v0;

## Iterate the finite difference loop
for n=1:Nsteps

v = [v; P*dt/(m*v(n))+ v(n)];
endfor

## For plotting purposes, define the time axis.
t=[0:Nsteps]*dt;

## We’d like to plot out result against the analytical result
vanalytic = sqrt(2*P*t/m+v0^2);

## Make two plots
## 1) vanalytic and v superimposed
## 2) vanalytic-v for better visualization

figure(1);
plot(t,vanalytic,’;analytic result;’,t,v,’;numeric result;’);
figure(2);
plot(diff(vanalytic-v’),’;difference;’);

The resulting plots should look like :
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The plot on the left clearly shows that for dt=0.1, the analytic and the numeric results are too close to make a
distinction by eye at this scale. On the right-hand side the difference is plotted to give us a better feel. You can
repeat the calculation for different dt. How does the error depend on dt?
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Needless to say, the velocity profile calculated in this way is only an approximation to the exact solution. Thus,
there will always be an error, which stems from the finite difference form of the derivative that we utilize in Eq. 6

v(t + ∆t) − v(t) = v(t) + v′(t)∆t +
1

2
v′′(t)(∆t)2 +

1

3!
v′′′(t)(∆t)3 + · · · − v(t)

= v′(t)∆t +
1

2
v′′(t)(∆t)2 +

1

3!
v′′′(t)(∆t)3 + · · · . (10)

In the language of discrete steps,

v′(tn) ≈
vn+1 − vn

∆t
+ O(∆t) (11)

t o leading order in ∆t. Substituting Eq. 11 in Eq. 8, we have

vn+1 =
P

Mvn

∆t + vn + O((∆t)2). (12)

Thus the lowest-order error that we make is of second order in ∆t. The magnitude of the error also depends on the
derivatives of the velocity function itself as can be seen from the Taylor expansion in Eq. 10.

B. In the presence of air drag

Simple as it might be, our picture of an ever-accelerating cyclist is a highly idealized one. Even the best-trained
cyclist with the most highly-optimized race bike will not be able to stand the air friction forever. This is why bike
producers put a lot of effort into designing bikes that help the cyclist assume a position during the race so as to
minimize the air drag. Air friction is also the reason why cyclists ride in packs during a race. This way the racers in
front “cut through” the air lessening the friction for the ones who are behind them.

The force due to air drag is a highly complicated function of velocity. Although we don’t know the exact dependence,
one thing we know is that its direction is exactly opposite that of the motion. We approximate it with a few elements
of a Taylor series

Fdrag = −B1v − B2v
2, (13)

where B1 and B2 are positive coefficients. For very small speeds, we can take the drag force to depend on the velocity.
But for any reasonable speed and for larger object (such as a cyclist), we can omit the linear dependence (known as
the Stokes term) and take only the quadratic term. As mentioned above, we do not know the exact value of B2 but
an intelligent guess could be made :

• The origin of the air drag is the energy necessary to move the air encountered by a moving object out of the

way.

• The mass of air displaced as an object moves with velocity v in a very small time interval dt is

mair ≈ ρAvdt (14)

where ρ is the density of air and A is the cross-section area of the object.

• The mass of air thus displaced is given a kinetic energy of

Eair ≈
1

2
mairv

2, (15)

which is provided by the drag force, Fdrag. In writing this, we assume that the air is accelerated to a velocity
of order v in a time interval dt.

• From the definition of work, we have

Fdragvdt = −Eair

Fdragvdt = −
1

2
ρAv3dt

⇒ Fdrag = −
1

2
ρAv2 (16)
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• In reaching the expression for Fdrag in Eq. 16, we have made several assumptions including the velocity to
which the air was accelerated and the geometry-independence of drag(except the area). Taking into account
these assumptions and empirical observations, air drag is proportional to a geometry dependent constant, C.

⇒ Fdrag = −
1

2
CρAv2 (17)

Adding the drag force (only the v2 term) to the expression in Eq. 18, we obtain

dv

dt
=

P

Mv
−

1

2

CρAv2

M
, (18)

which is much harder to evaluate analytically than Eq. 18. However, it requires almost no work to add this to our
iterative expression in Eq. 9 and solve numerically.

vn+1 = vn +
P

Mvn

∆t −
CρAv2

n

2M
∆t (19)

We can include the drag term to our code without the drag easily. First, we copy the old program file into a new file,
say, bicycle drag.m. We then modify the term that updates the velocity and also add a few constants to the header
where we declare the constants.

hande@439a:~$ cat bicycle_drag.m

## Velocity profile of a cyclist in the absence of drag

## Define the constants of the problem in the correct units
v0 = 4; ## initial velocity of the cyclist [m/s]
P = 400; ## power output of the cyclist [Watts]
mc = 70; ## weight of cyclist [kg]
mb = 15; ## weight of bike [kg]
m = mb+mc; ## total weight [kg]
ttotal = 300; ## total time of simulation [sec]
dt = 0.1; ## time step [sec]
C = 0.5; ## drag coefficient(unitless)
A = 0.33; ## frontal area of bike + cyclist [m^2]
rho = 1.29; ## density of air at sea level [kg/m^3]

## Calculate the number of steps that need to be taken to cover a time
## interval of ttotal. Make it an integer by rounding down (or up, it
## doesn’t make a difference)
Nsteps = floor(ttotal/dt);

## Initialize the velocity array. At the moment it’s a single number but it
## will become an array as we loop
v=v0;

## Iterate the finite difference loop
for n=1:Nsteps

v = [v; P*dt/(m*v(n))+ v(n)-0.5*C*A*rho*v(n)*v(n)*dt/m];
endfor

## For plotting purposes, define the time axis.
t=[0:Nsteps]*dt;

## The no-drag velocity profile (analytical)
vanalytic = sqrt(2*P*t/m+v0^2);

## Plot the no-drag case and the drag case together
plot(t,vanalytic,’;analytic result;’,t,v,’;numeric result;’);
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As expected, the drag force prevents the cyclist to accelerate indefinitely. His velocity converges to a limit value of
about 15.5 m/sec. You can modify the parameters in the problem to see how much they effect the terminal velocity.


