
Lecture VII : Random systems and random walk

I. RANDOM PROCESSES

In nature, no processes are truly deterministic. However, while dealing with many physical processes such as
calculating trajectories of large objects such as planets, cannonballs or while calculating the current through a simple
circuit, we can to a good approximation ignore all the random effects brought in by random processes such as
turbulence and electrical heat loss.

In certain systems, however, we cannot ignore these random effects as they are what determines the outcome of the
process. Some examples to such random processes are :

• motion of molecules in a solution

• mixing of gases

• electron diffusion in metals

• stock market fluctuations

• cluster growth (snowflakes, microclusters)

Suppose we put a drop of milk in a cup of coffee. If we were to zoom in and follow the motion of a single milk molecule
as the molk spreads and diffuses inside the coffee, we would see that it moves in short straight trajectories until it
encounters other coffee or milk molecules. After each encounter, we would see that it would change direction in a
drastic and unpredictable manner and continue on until the next encounter. Even if we knew all the laws governing
the motion of each of the milk and coffee molecules, it would be practically impossible to write down all of the billions
of equations of motion and solve them simultaneously. Instead, we simplify the description of the motion of molecules
as a probabilistic model, which entails the assignment of probabilities to motion of the motion of the molecules in each
dimension. In simulating such a process, we would of course need a program to generate the random numbers that
we need.

II. WORKING WITH RANDOM NUMBERS IN OCTAVE

In Octave, there are two separate random number generators.

• rand that generates uniformly distributed random numbers between 0 and 1.

• and randn that generates normally distributed random numbers.

Numbers chosen from a uniform distribution all have equal probabilities of occuring. The simplest process with a
uniform distribution is a coin toss where the probability of getting a head or a tail is identical and equal to 1/2. Thus,
the probability of any number in a uniform distribution is given by

P(x) = c

where c is a constant. If the numbers are defined on a interval whose length is ℓ then c = 1

ℓ
such that all the

probabilities add up to 1.
A normal distribution on the other hand produces numbers whose probabilities depend on their value as a Gaussian.

P(x) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

where σ is related to the variance of the distribution and µ is the mean.
If rand or randn is called from Octave without any arguments, they produce a single number within their domain.

Each time you call them, they produce a different number.

2

octave:1> rand
ans = 0.56407
octave:2> rand
ans = 0.40178
octave:3> rand
ans = 0.57570
octave:4> randn
ans = 1.3561
octave:5> randn
ans = 1.1155
octave:6> randn
ans = 0.45327
octave:7> randn
ans = -0.89322

You can also call these two functions with one or two integer arguments, in which case they create a matrix of random
numbers with the given distribution.

octave:1> rand(3)
ans =

0.177001 0.025417 0.749406
0.678631 0.350609 0.310275
0.669049 0.770739 0.951104

octave:2> randn(3,2)
ans =

-1.94691 -0.11158
0.81064 0.90569
-1.33847 0.26074

octave:3> rand(4,1)
ans =

0.16970
0.25418
0.34736
0.70195

Random number generators usually rely on a semi-deterministic method for generating the desired numbers. To see
that rand and randn indeed yield the desired distribution, let’s generate increasingly larger sets of random numbers
and let’s view their histograms using hist.

octave:1> r100=rand(100,1);
octave:2> r1000=rand(1000,1);
octave:3> r10000=rand(10000,1);
octave:4> r100000=rand(100000,1);
octave:5> hist(r100,10)
octave:6> hist(r1000,10)
octave:7> hist(r10000,10)
octave:8> hist(r100000,10)

The sequence of plots thus produced looks like the following :

3

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

number

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

number

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

number

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

number

n=100 n=1000 n=10000 n=100000

The same procedure may be applied with the randn function.

 0

 5

 10

 15

 20

 25

-3 -2 -1 0 1 2 3 4

fr
eq

ue
nc

y

number

 0

 50

 100

 150

 200

 250

 300

-4 -3 -2 -1 0 1 2 3

fr
eq

ue
nc

y

number

 0

 500

 1000

 1500

 2000

 2500

 3000

-4 -3 -2 -1 0 1 2 3 4

fr
eq

ue
nc

y

number

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

-5 -4 -3 -2 -1 0 1 2 3 4 5

fr
eq

ue
nc

y

number

n=100 n=1000 n=10000 n=100000

As we can imagine, the larger the set of random numbers the more accurate the distribution.

III. RANDOM WALK

Random walk is a simple model to describe motion of particles that undergo random changes of direction during
their trajectory. One such particle might be a drunken man who randomly walks around the city picking a random
street at every junction. The question is how long it will take for him to reach his house (if ever). This is an example
of a two-dimensional random walk on a lattice. An even simpler example is a one dimensional random walk where the
walker starts at the origin designated by x0 = 0 and takes a step of unit length to the left or to the right according
to the results of a coin toss. If it’s a head, it moves to the left and if it’s a tail it moves to the right. How far away
from x0 does the walker end up after N coin tosses.

First let’s analyze this analytically. Let’s consider the average displacement of the particle after a very large number
of steps, N .

〈xN 〉 =

N
∑

i

si

where si is the displacement at step i. Because we are considering random walk in one dimension, si = ±1. Because
for a very large number of steps the walker is just as likely to move to the left as it is to the right, the average total
displacement is zero.

A more meaningful property to look at perhaps is the average of the square of the total displacement

〈x2

N 〉 =

N
∑

i

si

N
∑

j

sj

For all i = j, the second sum yields zero. For i = j, then

〈x2

N 〉 =
N

∑

i

s2

i =
N

∑

i

1 = N

4

Thus, the square of the total displacement in an N -step random walk is proportional to N. This is in contrast with
a free particle moving with a constant velocity for which the displacement scales like the time. Clearly the random
walker moves more slowly. In our simulations, N is synonymous with time. We may generalize the above equation as

〈x2〉 = 2dDt.

where D is called the diffusion constant, d is the dimensionality of the problem, t is time in seconds and 2 is just a
convenient convention.

Let’s now prove this by writing a small code. Before writing the code, let’s think of some relevant issues :

• The average : The average 〈x2

N 〉 is going to be calculated over N random walks. N random walks will
be generated and the square of the cumulative displacement will be calculated. Such and average should be
calculated for various N ’s and collected.

• Single random walk : Each random walk produced should be long enough to provide good statistics. On
the other hand they shouldn’t be so long as to make the simulation prohibitively long.

• Coin toss : Octave is not able to generate events with discrete outcomes. It can only produce a continuum of
numbers with either a uniform or a normal distribution. We can however convert the outcome of the function
rand to a binary outcome in the following way : for each step of the random walk, we generate a uniformly
distributed random number using rand. If it’s smaller than 0.5, we take a step to the left. If it’s larger than
0.5, we take a step to the right.

• Statistics : For extremely large N ’s a 〈x2

N 〉-vs-t plot should give us an exactly straight line whose slope is
2D. However, because our N ’s are finite, the line will not be exactly straight. In order to get the slope with
some statistical error, we’ll make a fit to the resulting data using polyval and polyval in Octave

A. polyfit and polyval

In interpreting results from experiments or computer simulations, instead of viewing raw data, we prefer to fit these
data to functional forms that are based on some physical intuition. In Octave there are two functions that help us
do this.

octave:1> data=load data-fit;
octave:2> [p,s]=polyfit(data(:,1),data(:,2),2);
octave:3> p
p =

1.004483 0.010956 0.050520

octave:4> s.normr
ans = 0.18576
octave:5> y=polyval(p,data(:,1));
octave:6> plot(data(:,1),data(:,2),’b*;Raw data;’,data(:,1),y,’r-;Fit;’)

with the outcome

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5 0 0.5 1

5

In the above code segment, we notice the following new elements :

1. load reads a text file from memory and assigns it to the designated variable, in this case data.

2. polyfit(x,y,n) does a least-squares fit of the arrays x and y to a polynomial of order n. p is an array containing
the coefficients of the resulting polynomial and s is a structure that contains various matrices and arrays related
to the fitting procedure. In particular, the element of s called normr accessed as demonstrated is a measure of
the quality of the fit.

3. polyval takes an array as its first argument, another array as its second argument, interprets the first as the
coefficients of a polynomial and evaluates the values of this polynomial at the points supplied by the second
array. In other words

octave:1> p=[1 2 3]; x=1:100;
octave:2> y=polyval(p,x);

is equivalent to

octave:3> p(1)*x.^2+p(2)*x+p(3);

B. The code for finding the diffusion constant, D

To calculate the average of x2 over many random walks, we need a loop that creates many random walks, say Nrw,
of Nsteps at every turn and extract x2 from each. We’ll then add up all those values and divide by Nrw to find
the average. We’ll then repeat this for many different N’s and plot 〈x2〉 versus N . We’ll finally perform the fitting
procedure discribed above.

As we gather from the above explanation, we need three nested loops in our code. Here, nested means one inside
the other.

• One loop to generate each random walk, of length Nsteps

• One loop to calculate the average of x2 over many random walks, of length Nrw

• And one loop to obtain 〈x2〉 for different N ’s, of length Ns

C. Single random walk in one dimension

To generate a single random walk in one dimension, we need to simulate a coin toss. That is to say, for each step of
the random walk, we need create an event which has only to outcomes with equal probability. Such an event might be
simulated using rand as follows : for each step of the random walk we call rand. Now the numbers that are smaller
than 0.5 are as likely to come up as numbers that are larger than 0.5. We may thus make a move to the left if the
number that comes up is smaller than 0.5 and to the right if it is larger than 0.5. We could pack this discrete form of
rand into a function called, rand disc. Instead of writing a function that returns a single number every time and call
it several times from an external loop to create the random walk, it is much more efficient to create all the elements
of the random walk at once.

In this section, we’ll also see a striking example of how efficient vector operations are in comparison to loops. First
let’s write a straightforward function that contains a loop in its body :

function r=rand_disc_loop(N,num)

rn=[];
for n=1:N

if (rand<num)
rn=[rn;-1];

else
rn=[rn;1];

6

endif

endfor

endfunction

and now let’s try to get rid of the loop using specialized array operations coded in Octave

function r=rand_disc(N,num)

rn=rand(N,1);
r=(rn<num);
li=find(r == 0);
r(li)=-1;

endfunction

There are many new concepts that we see in this new function :

• It takes in two arguments : the first one is the obvious length of the random walk and the second is the offset

of the probability. If we want to create an uneven random walk where the probability of going to the left is
different from the probability of going to the right, then we could set num to be a different number than 0.5. If
for example, our walker is three times as likely to go left than right then we could call our function with num
equal to 0.75.

• The construct

r=(rn<num);

is a logical assignment. It checks the thruth value of the clause in parentheses for each element of the array rn
and assigns a value of 1 is it’s true and a value of 0 if it is false.

• The find statement checks for the logical clause in parantheses next to it and makes a list of those elements of
the array that satisfy this statement.

Next, let’s compare their efficiency :

octave:1> tic;rand_disc_loop(10000,0.5);toc
ans = 0.86784
octave:2> tic;rand_disc(10000,0.5);toc
ans = 0.0041240
octave:3> tic;rand_disc_loop(30000);toc
ans = 8.8272
octave:4> tic;rand_disc(30000,0.5);toc
ans = 0.011905
octave:5> tic;rand_disc_loop(50000,0.5);toc
ans = 25.911
octave:6> tic;rand_disc(50000,0.5);toc
ans = 0.019542

tic and toc are keywords which measure the time (in seconds) it takes to execute the Octave commands written
inbetween. As you can see the loops take a much longer time to perform the same operation that specialized array
operations in Octave take. Moreover, this discrepancy grows as the number of operations increase.

D. Putting everything together

We finally put all of the above pieces of code together and write the following script which we call random walk 1d.m

7

Random walk in one dimension

x2ave=[];
Nrw=3000;
Nstepsmax=10000;
inc=1000;
beg=1000;
dt=1;

for Nsteps=beg:inc:Nstepsmax;
Nsteps
x2=0;

for m=1:Nrw
r=random_disc(Nsteps,0.5);
x2+=sum(r)^2;

endfor

x2ave=[x2ave;x2/Nrw];

endfor

hold off
plot(dt*[beg:inc:Nstepsmax],x2ave,’b*;;’)
[p,s]=polyfit(dt*[beg:inc:Nstepsmax]’,x2ave,1);
pval=polyval(p,dt*[beg:inc:Nstepsmax]);
hold on
plot(dt*[beg:inc:Nstepsmax],pval,’r-’);
hold off

D=p(1)/2

Let’s analyze the piece of code above :

1. In the constants section, we set Nrw and Nsteps. Because we are going to generate random walks with different
Nsteps values, we set the beginning value, the increment and the final value for Nsteps. We also give a value
to the time step dt which serves only the purpose of given the diffusion constant D proper units.

2. x2ave is going to be the array of 〈x2〉 values for x2 over all Nrw random walks for different Nsteps and therefore
we initialize it to an empty array at the beginning.

3. Inside the loop over Nsteps, we first display Nsteps so that we can watch the algorithm advance. Then we set
x2 to zero since this is the variable that’s going to contain the total x2 from all the random walks.

4. The inner loop over m goes over all the random walks and finds the total displacement square for each random
walk adding them up. In the end we divide it by the number of random walks we have used and append it to
x2ave.

5. At the end, we perform the fitting procedure described above.

6. The parts that are written in blue could be turned into functions which would make the above code look tidier
and more modular.

Now, let’s run this code with two different Nrw values, Nrw=1000 and Nrw=5000.

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

<
x^

2>

N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

<
x^

2>

N

Nrw=200 Nrw=1000
D=0.55 units2/sec D=0.49 units2/sec
s.normr=1131.8 s.normr=791.38

For this simple random walk problem we expect D to be 0.5. As you can see from the comparison above, D is closer
to 0.5 for a larger Nrw. This is a reflection of better statistics and it also reflects itself in the quality of the fit given
by s.normr.

E. Uneven random walk

Let’s now run the same code but let’s increase the probability of stepping to the right slightly by calling our
user-defined function rand disc as rand disc(Nsteps,0.45). The resulting plot is no longer a straight line. This
is because the motion now is somewhere between a real random walk and unhindered motion with constant velocity.
We thus expect the average square displacement to go like an exponent of t, which is between 1 and 2. Let’s call it
α. In order to determine α, we perform the following logarithm trick.

〈x2〉 = Ctα ⇒ log(〈x2〉) = log C + α log t

If we now make a first-order fit to the logarithms, the slope gives us α.

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 6.5 7 7.5 8 8.5 9 9.5

lo
g(

<
x^

2>
)

log(t)

In the example above, for num=0.45, the slope is found to be 1.96. This means that even for a very small offset in
the probability, the motion approaches that of a free particle very fast.

