
Lab III : Taylor expansion and projectile motion

Example 1 : Taylor expansion

In the previous lab hour, you wrote a function called factorial. Using this function now, we are going to write
another function that enables us to visualize how fast the Taylor expansion converges to the exponential.

The Taylor expansion of any function around a number, provided that it is convergent, is a series that can be
written in the following way

f(x − a) =
∞∑

i=0

f (n)(a)

n!
(x − a)n. (1)

In this example, we are going to use the simple exponential function, ex and see how fast the terms in the sum

ex =
N∑

i

xn

n!
(2)

converges as a function of N.

hande@p439a:~$ cat exponential.m

## Find the polynomial approximation to the exponential to an arbitrary order.
function f=exponential(n,x)

hold off
f=ones(size(x));
plot(x,exp(x),’;Exact exponential;’,x,f,’;Taylor expansion;’);
pause
hold on

for order=1:n

f+=(1./factorial(order))*x.^order;
plot(x,f,’;;’);
err=sum((exp(x)-ex)./exp(x))/length(x)
pause

endfor

endfunction

The for loop in the above exercise will progressively add to the output variable ex a new term from the Taylor
expansion. It then plots the improved expansion together with the exact exponential at every step, pausing and
waiting for the user to press any key before going on to the next step in the loop. If you now call your exponential
function from the Octave prompt now as in the following

octave:1> x=0:0.1:5;
octave:2> ex=exponential(6,x);
err = 0.60690
err = 0.43444
err = 0.28896
err = 0.17754
err = 0.10052
err = 0.052450

you should see the following progression of the expansion.
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The function also outputs an error value, which is a measure of the sum of the deviation of the exact function from
the expansion at every point divided by the number of points. As expected the error goes down as we increase the
order of the expansion.

Because the function ex is entire, meaning that it can be Taylor-expanded at any point in its domain, this
expansion will work for any range of x. How about log(x)?

Example 2 : Projectile motion in two dimensions, the cannon ball in the absence of air drag

In class, we saw a simple example of motion in one-dimension. Already at this level, the problem demonstrates
sufficient analytical complexity that it pays off to resort to numerical methods. In this example, we will increase the
comlexity by carrying the problem over to two dimensions and also adding more realistic effects due to air friction.
We will develop our problem in stages. Let’s start with the simplest case where we ignore air friction.

Consider a cannonball launched at a given angle θ0. Ignoring air friction for the moment, we may write the equations
of motion as follows :

d2x

dt2
= 0

d2y

dt2
= −g (3)

which should be familiar from freshman kinematics. The equations above are of second order this time, which we
can of course convert to first order easily by taking the analytical derivative but because the later development of the
problem will involve dealing with coordinates directly, we’ll keep them as second order.

While second order differential equations may also be tackled using the Euler method, it’s often easier to write
them as a combination of first order equations. Eq. 3 may then be cast in the following form

dx

dt
= vx

dvx

dt
= 0

dy

dt
= vy

dvy

dt
= −g (4)

We may now write Eq. 4 in the finite difference (Euler) form.

xn+1 = xn + vx,n∆t

vx,n+1 = vx,n

yn+1 = yn + vy,n∆t

vy,n+1 = vy,n − g∆t (5)
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Unlike the bicycle example, at every step of our loop, we will be incrementing four arrays this time. They each
depend on the values of themselves and others in the previous step. The other big difference between this and the
one-dimensional example is that here, it’s less obvious when we should terminate the loop. Previously, we were given
a fixed number of steps and we were thus able to write a for loop containing that many steps. In the present example,
though, we know physically that it’s meaningful to continue the iterations until the y-coordinate of the trajectory
becomes less than zero. In this case, it is more appropriate to use a while loop since we only know the condition on
the system and not the number of steps.

With these in mind, we cast Eq. 5 into Octave code, following this outline :

• Declare suitable variables :

Constant Symbol Value
Gravitational acceleration g 9.8 m/sec2

Launch velocity v0 700 m/sec
Launch angle theta0 45o (see below)

Time step dt 0.1 sec

• Using the constants, initialize the arrays that you will be building up, namely x, y, vx, vy.

• Initialize the loop index, n.

• Iterate the four variables until the while condition is no longer satisfied.

• Plot y versus x.

hande@p439a:~$ cat cannon_nodrag.m

## Motion of the cannonball without air drag
g = 9.8; ## m/sec^2
v0 = 700; ## m/sec
theta0 = 45; ## degrees
dt=0.1; ## sec

## Convert degrees to radians
theta0 *= pi/180; ## rad
x=0; y=eps;
vx=v0*cos(theta0); vy=v0*sin(theta0);
n=1; ## Initialize the loop index

## Run the loop until the vertical component is smaller than zero
while ( y(n)>0 );

x=[x;x(n)+vx(n)*dt];
y=[y;y(n)+vy(n)*dt];
vx=[vx;vx(n)];
vy=[vy;vy(n)-g*dt];
n++;

endwhile

plot(x/1000,y/1000,’;no drag;’)

In the piece of code above, there are a few points (highlighted in red) that need to be taken care of.

1. Degreed in Octave need to be in radians. You can see this by going to your Octave prompt and trying to
evaluate sin(45). You’ll see that the number that you obtain has nothing to do with sin(pi/4). However,
it’s still better to let the user enter the angle in degrees, because users will usually have a better intuition into
degrees than radians. You can do the conversion internally hidden away from the user.

2. While initializing y, we used y=eps, where eps is a very small number (O(10−16)) in Octave. Although it’s zero
for all intents and purposes, it still enables the loop condition to be satisfied. If, on the other hand, we initialize
y to exactly zero, the loop never starts.
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3. Unlike the for loop, the while loop doesn’t increment the loop index itself. We must therefor increment n
manually. n++ is a shortcut for n=n+1.

4. In the end, we plot the distances in km’s.

You can run the above code for a set of different angles and see the difference in the corresponding trajectories. You
can verify that the maximum trajectory is obtained for θ = 45o. You will see that this is no longer the case when
drag is involved. You can also superimpose trajectories corresponding to different angles on the same plot using the
hold command that you’ve learnt a while ago.
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