
Lab V : Solving partial differential equations, waves in strings

In this lab, you are going to code up a simulation in time of a traveling wave on an ideal string with fixed boundary
conditions. As we saw in the lecture, the discrete equation that governs this simulation is

y(i, n + 1) = r2[y(i + 1, n) + y(i − 1, n)] + 2(1 − r2)y(i, n) − y(i, n − 1)

where y is the vertical displacement of the i discrete segment, n is the time index and r = c∆t/∆x with ∆x being
the spatial step and ∆t the time step. c, here is the speed of the traveling waves on the string.

Our simulation code is going to perform the following tasks :

1. Initialize the profile

2. Evolve the profile in time in accordance with the equations of motion.

3. Plot the profile at every step.

It’s a good idea to break these tasks into subroutines (functions) that e call from a main program. Let’s call the main
program string fixed.m. We’ll write two subrotines : one for setting up the initial profile (initial profile.m)
and the other for calculating the profile at the next step given the profiles for the present step and the previous step
(propagate.m).

Let the initial profile be a Gaussian. A Gaussian usually has two degrees of freedom, its center and its width.
initial profile, which forms the initial profile takes in both of these in addition to an array of x-values and
outputs the y-displacements in the following way :

## Sets up the initial profile as a Gaussian
## Usage : function y=initial_profile(x,x0,k)
## x is the array that contains values on the horizontal axis, x0 is the
## center of the Gaussian and k is a parameter that determines the width
## of Gaussian

function y=initial_profile(x,x0,k)

y=exp(-k*(x-x0).^2);

endfunction

Here e need the . because x is an array and we need an element-by-element square.
propagate takes in the profiles as entire arrays from the present step and the previous step and calculates the

profile in the next step.

## Takes in the previous and the present profiles and iterates to find
## the profile in the next time step.

function ynext=propagate(ynow,yprev,r)

## Quick and dirty way to fix boundary conditions -- for each step
## they are the same as the previous step.

ynext=ynow;
for i=2:length(ynow)-1
ynext(i) = 2*(1-r^2)*ynow(i)-yprev(i)+r^2*(ynow(i+1)+ynow(i-1));

endfor

endfunction

Let’s analyze this code :
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• This function takes two profiles (arrays), one corresponding to the time step n and the other corresponding to
the time step n − 1. Because y is characterized by to indices i and n, we could have stored all the time history
of all the points on the string in a matrix, but this is unnecessary because we only need to consecutive steps
at a time to calculate the next step. For this reason, we absorb the meaning of the time index n into names of
arrays as in ynext, yprev and ynow.

• As seen in red, at every step of the propagate function, we assign all the elements of ynext to ynow. We are
in fact doing this in order to fix the boundary conditions, i.e. at every time step, the first and last segments
should remain the same. Becuase we are going to change the elements in the middle anyway, we can set the
entire array ynext to ynow at the beginning. This also has the advantage of initializing the size of ynext. We
could instead have done

ynext=zeros(size(ynow));
ynext(1)=ynow(1);
ynext(length(ynow))=ynow(length(ynow));

which is only slightly more cumbersome than assigning the hole array.

• The loop of course starts from 2 and goes up to one segment before the last segment. This is obviously needed
because i-1 and i+1 would be undefined for the first and last segments respectively. Besides the first and the
last segments are already fixed by the boundary conditions.

We can finally put together all of this to write the final code as

## Script that simulates a traveling wave on an ideal string.

dx=1e-2; ## Spatial increment [m]
c=300; ## Speed of sound [m/sec]
dt=dx/c; ## Time increment [sec]
r=c*dt/dx; ## Dimensionless constant

x=-1:dx:1;
l=length(x);
x0=0.5;
k=1e2;
## Set up the initial profile
y=initial_profile(x,x0,k);
plot(x,y)
pause

## Impose the time boundary condition
ynow=y;
yprev=y;

Nsteps=2000;

for n=1:Nsteps

ynext=propagate(ynow,yprev,r);
plot(x,ynext,’;;’)
axis([-1.05,1.05,-1.1,1.1])
pause(0);

yprev=ynow;
ynow=ynext;

endfor

Let’s now analyze this code, concentrating on the points higlighted in red :
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• As we have discussed in lecture, r=1 is the best choice for our simulation. However, under certain circumstances,
it might be necessary to use rs that are smaller than 1. In preparation for these cases, we define r in the formal
way.

• Before starting the time iterations, we need to initialize ynow and yprev. Assigning both of them to the initial
Gaussian profile is equivalent to keeping the string stationary in time for all times up until the time of the
simulation.

• In the time loop, it is not sufficient to calculate the profile in the next step using propagate. We must also
move forward ynext so that it becomes ynow in the next step. Similarly what we call ynow for the present step
should become yprev for the next step. This circular shift has to be done ith a lot of care because if the order
is wrong, you might overwrite data that you need.


