
Lecture VIII : Fractals and fractal dimension

In this lab, we shall write a function that calculates thre fractal dimension of a curve given its x and y coordinates.
Although recursively generated fractals are esthetically pleasing, fractals in nature occur as a result of random processes
making the analytical determination of their dimension impossible. We will, however, use a method that is similar to
the one we used in determining the dimension of the Koch fractal in lecture.

Consider the following randomly generated fractal curve.

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

y

x

This is in fact a Koch curve generated by
inserting a triangle between pairs of points
at different levels. This time, however, the
angles at the corners of the triangles and
their side lengths have been chosen at ran-
dom. Notice that this graph has a strong
resemblance to a coastline on a map. Coast-
lines are in fact also fractals.

We are going to find the dimension of
such curves by successively decreasing the
step size and counting how many steps are
needed to reach from one end to the other.
Each time we decrease the step size by, say,
two, the number of steps needed to reach
the end should increase by a factor that is
often larger than two as more and more of
the underlying structure of the fractal is re-
vealed. At this point, we also remember
that the fractal dimension is given by

log Ns = −df log Ls (1)

Thus the negative slope of the linear fit to the log Ns versus log Ls curve will provide the fractal dimension. In order
to understand the procedure described above, let’s consider a cartoon of the algorithm. Be warned that the distances
of line segments in the plot below are not drawn to scale, so don’t try to make sense of the number of steps.

Ls=d      Ns=1

Ls=d/2      Ns=2

Ls=d/4      Ns=7

Ls=d/8      Ns=12

1. Start by determining the linear distance between the first and the last points of the curve. The step length at
this level Ls is thus equal to this distance, d and the number of steps is Ns.

2. At each level decrease the step size by a factor of 2, setting Ls = d/2n and initialize Ns to zero.

3. Start at the first point and we calculate the distance between the first point and consecutive points until we
reach a distance of Ls. (Of course we are never going to get exactly Ls but we can decide to stop just before
we reach Ls or just after. If the number of points on the curve is large enough and the step sizes eventually get
down to small enough values, it shouldn’t make much of a difference.)



2

4. When you find the point which is a distance Ls or greater away from the initial point stop and increment Ns

by one.

5. Start from the same point where you stopped at the last step. Measure the difference between this point and
consecutive points until you reach a distance of at least Ls. Increment Ns

6. Keep incrementing Ns until you come to the end of the curve. At the end, there’s going to be a little segment
whose length is smaller than Ls. Ignore that segment. (Again for large number of points, it shouldn’t change
the result).

7. Record Ns for this level.

8. Come back to the beginning of the curve and move onto the next level by halving the step size.

9. Repeat the above procedure for a predetermined number of levels and record Ns for each level (or equivalently
for each Ls).

10. Make a log-log plot of Ns versus Ls and calculate the slope.

Exercise 1 : Fit and plot

We’ll first start with a simple function which takes in the x and y coordinates of a curve and fits a polynomial to
it. As we have seen in previous lectures, there already exists such a function called polyfit in Octave. The new
function, fit, that we are about to write adds an additional functionality to this function, which is plotting the data
and the fit together so as to assess visually the quality of the fit. Such programs that modify the use or output of an
already-existing function or program are called wrappers.

## Function that fits a given set of data point to a polynomial of
## specified degree, producing at the same time a superimposed plot of the
## data points and the fit.
## Usage p=fit(x,y,n)

function p=fit(x,y,n)

p=polyfit(x,y,n);
xx=linspace(min(x),max(x),100);
plot(x,y,’b*;Data;’,x,polyval(p,xx),’r-;Fit;’);

endfunction

• The polyfit function is called in the usual way, returning the polynomial coefficients as an array, p.

• Then we define an additional array that spans the same interval as x but in smaller steps (Assuming x has fewer
than 100 elements). This is just to obtain a smooth curve for the fit in case the number of elements in x are too
few.

• Plot the data as blue points (b*) and the fit as a red curve (r-) giving them appropriate legends.

• In plotting the fit, use the polyval function to evaluate the polynomial at the elements of xx. This is equivalent
to doing the following

p(1)*x.^n+p(2)*x.^(n-1)+....+p(n-1)*x+p(n)

Pay attention to the fact that the coefficient of the highest order term of the polynomial is the first element.

We’ll use this function for determining the slope of the log-log plot in the second example.

Exercise 2 : Determining the fractal dimension

In this part, we cast into Octave code the algorithm discussed above. For this exercise, we need three nested loops :

• A for loop that goes over levels and decreases the step length at every level.



3

• A while loop that enables us to count the number of steps along the curve for a given level until we reach the
last segment whose length is smaller than Ls.

• A second, innermost while loop that calculates the distances between a given point and the consecutive points
until the distance is greater than Ls.

For the for loop incrementing the index (let’s call it n) that goes over levels is not a problem because it gets
incremented automatically. However, for the while loops we need to increment or advance the indices ourselves.
Each of the while loops is associated with a different index. Let’s call these c1 and c2. Let c1 represent the index
for the fixed point and gets advanced in the outer while loop while c2 is the index of the consecutive points and gets
incremented in the innermost while loop.

In addition, we need to count the number of steps for each level. For this, we set up a counter, Ns and increment
it each time the innermost while loop is completed.

Let’s call our function fractal dimension.m.

## Program that calculates the fractal dimensionality of an arbitrary
## curve (could also be smooth)
## Usage : df=fractal_dimension(x,y,Nlevels)
## df : fractal dimension
## x,y : coordinates of the fractal
function df=fractal_dimension(x,y,Nlevels)

## Calculate the distance between the initial and final point of the
## curve.
l=length(x); ## Gets used several times, so assign to variable
d = sqrt( (x(l)-x(1))^2+(y(l)-y(1))^2 );
Lsf=[]; Nsf=[]; ##

for n = 1:Nlevels
n ## For display, no semicolons
Ls = d/2^n; Lsf = [Lsf;Ls];
Ns = 0; ## Counter for number of steps
c1 = 1; ## Counter for the reference point
di_to_end = d+eps; ## Distance of c1 to the end

while ( di_to_end>Ls )

c2 = c1+1; ## Consecutive point
di = 0; ## Initialize the distance between c1 and c2

while ( di < Ls )
di = sqrt( (x(c2)-x(c1))^2 + (y(c2)-y(c1))^2 );
c2++;

endwhile

c1=c2;
di_to_end = sqrt( (x(c1)-x(l))^2 + (y(c1)-y(l))^2 );
Ns++; ## Increment the number of steps

endwhile

Nsf=[Nsf;Ns];

endfor

p=fit(log(Lsf),log(Nsf),1);
df=-p(1);

endfunction



4

• Because we need to make a log-log plot of Ns versus Ls, we need to keep record of the total number steps at
every level as an array. Nsf and Lsf are such arrays, to which we add Ls and the final Ns at every step of the
for loop.

• di to end is a variable that measures the distance between the point designated by c1 and the endpoint. The
outer while loop terminates when this distance is smaller than Ls.

• For each c1, the first c2 designates the adjacent point. Therefore, at the beginning of the outer while loop, c2
is initialized to c1+1.

• After the innermost while loop is finished for a given c1, c1 needs to be reset to begin the next step. The point
where it should be reset is the final point where the last c2 was found. We thus set c1 equal to c2 at the end
of the innermost while loop.

• At the end, just before terminating the function, we use the fit function from the previous exercise to make a
linear fit and extract the fractal dimension from the slope.

If you use this function with a smooth curve such as a line or a low-order polynomial, the slopw should give
something that is close to one. If you use it for the random Koch fractal in the first figure, it should be something
that is close to the regular Koch curve, about 1.1.


